Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Quasi-Unimodal Distributions for Ordinal Classification
Publication

Publications

Quasi-Unimodal Distributions for Ordinal Classification

Title
Quasi-Unimodal Distributions for Ordinal Classification
Type
Article in International Scientific Journal
Year
2022
Authors
Tomé Albuquerque
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Ricardo Cruz
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Jaime S. Cardoso
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Title: MathematicsImported from Authenticus Search for Journal Publications
Vol. 10
Pages: 1-980
Publisher: MDPI
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00W-9WC
Abstract (EN): Ordinal classification tasks are present in a large number of different domains. However, common losses for deep neural networks, such as cross-entropy, do not properly weight the relative ordering between classes. For that reason, many losses have been proposed in the literature, which model the output probabilities as following a unimodal distribution. This manuscript reviews many of these losses on three different datasets and suggests a potential improvement that focuses the unimodal constraint on the neighborhood around the true class, allowing for a more flexible distribution, aptly called quasi-unimodal loss. For this purpose, two constraints are proposed: A first constraint concerns the relative order of the top-three probabilities, and a second constraint ensures that the remaining output probabilities are not higher than the top three. Therefore, gradient descent focuses on improving the decision boundary around the true class in detriment to the more distant classes. The proposed loss is found to be competitive in several cases.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 13
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Survey on Synthetic Data Generation, Evaluation Methods and GANs (2022)
Another Publication in an International Scientific Journal
Figueira, A; Vaz, B
Nonlinear Dynamics (2022)
Another Publication in an International Scientific Journal
António Mendes Lopes; Machado, JAT
Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods (2020)
Another Publication in an International Scientific Journal
Nosratabadi, S; Mosavi, A; Duan, P; Ghamisi, P; Filip, F; Band, SS; Reuter, U; João Gama; Gandomi, AH
Welfare-Balanced International Trade Agreements (2023)
Article in International Scientific Journal
Martins, F; Alberto A. Pinto; Zubelli, JP
Validation of HiG-Flow Software for Simulating Two-Phase Flows with a 3D Geometric Volume of Fluid Algorithm (2023)
Article in International Scientific Journal
Silva, ATGD; Fernandes, C; Organista, J; Souza, L; Castelo, A

See all (46)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-07 at 23:35:57 | Privacy Policy | Personal Data Protection Policy | Whistleblowing