Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Human Detector Smart Sensor for Autonomous Disinfection Mobile Robot
Publication

Publications

Human Detector Smart Sensor for Autonomous Disinfection Mobile Robot

Title
Human Detector Smart Sensor for Autonomous Disinfection Mobile Robot
Type
Article in International Conference Proceedings Book
Year
2021
Authors
Mendonça, H
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Lima, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Paulo Gomes da Costa
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Indexing
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00V-RKJ
Abstract (EN): The COVID-19 virus outbreak led to the need of developing smart disinfection systems, not only to protect the people that usually frequent public spaces but also to protect those who have to subject themselves to the contaminated areas. In this paper it is developed a human detector smart sensor for autonomous disinfection mobile robot that use Ultra Violet C type light for the disinfection task and stops the disinfection system when a human is detected around the robot in all directions. UVC light is dangerous for humans and thus the need for a human detection system that will protect them by disabling the disinfection process, as soon as a person is detected. This system uses a Raspberry Pi Camera with a Single Shot Detector (SSD) Mobilenet neural network to identify and detect persons. It also has a FLIR 3.5 Thermal camera that measures temperatures that are used to detect humans when within a certain range of temperatures. The normal human skin temperature is the reference value for the range definition. The results show that the fusion of both sensors data improves the system performance, compared to when the sensors are used individually. One of the tests performed proves that the system is able to distinguish a person in a picture from a real person by fusing the thermal camera and the visible light camera data. The detection results validate the proposed system.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 15
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-15 at 02:24:53 | Privacy Policy | Personal Data Protection Policy | Whistleblowing