Abstract (EN):
There are significant changes occurring both in the electricity system and the natural gas system. These two energy carries can be combined to form what is known as an energy hub. These energy hubs can play a significant role in the energy system and thus understanding of their optimization, especially their costs, is important. This paper proposes a risk management framework for an energy-hub through the utilization of the information-gap decision theory (IGDT). The uncertainties introduced from the various load profiles, such as the electric and heating loads, are considered in this risk management framework. The modeled energy-hub consists of several distributed generation systems such as a microcombined heat and power (mu CHP), electric heat pump (EHP), electric heater (EH), absorption chiller (AC) and an energy storage system (ESS). A demand response (DR) program is also considered to shift a percentage of electric load away from the peak period to minimize the operational cost of the hub. A feasible test system is also applied to demonstrate the proposed model's effectiveness.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
6