Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > OptiOdom: a Generic Approach for Odometry Calibration of Wheeled Mobile Robots
Publication

Publications

OptiOdom: a Generic Approach for Odometry Calibration of Wheeled Mobile Robots

Title
OptiOdom: a Generic Approach for Odometry Calibration of Wheeled Mobile Robots
Type
Article in International Scientific Journal
Year
2022
Authors
Petry, MR
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Paulo Gomes da Costa
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 105
Final page: 39
ISSN: 0921-0296
Publisher: Springer Nature
Other information
Authenticus ID: P-00W-PY0
Abstract (EN): Odometry calibration adjusts the kinematic parameters or directly the robot's model to improve the wheeled odometry accuracy. The existent literature considers in the calibration procedure only one steering geometry (differential drive, Ackerman/tricycle, or omnidirectional). Our method, the OptiOdom calibration algorithm, generalizes the odometry calibration problem. It is developed an optimization-based approach that uses the improved Resilient Propagation without weight-backtracking (iRprop-) for estimating the kinematic parameters using only the position data of the robot. Even though a calibration path is suggested to be used in the calibration procedure, the OptiOdom method is not path-specific. In the experiments performed, the OptiOdom was tested using four different robots on a square, arbitrary, and suggested calibration paths. The OptiTrack motion capture system was used as a ground-truth. Overall, the use of OptiOdom led to improvements in the odometry accuracy (in terms of maximum distance and absolute orientation errors over the path) over the existent literature while being a generalized approach to the odometry calibration problem. The OptiOdom and the methods from the literature implemented in the article are available in GitHub as an open-source repository.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 22
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Special Issue on Autonomous Robot Systems (2015)
Another Publication in an International Scientific Journal
reis, lp; calado, jmf; rocha, rp
Autonomous Robot Systems (2016)
Another Publication in an International Scientific Journal
Luis Almeida; Marques, L
Active Perception Fruit Harvesting Robots - A Systematic Review (2022)
Another Publication in an International Scientific Journal
Magalhaes, SA; António Paulo Moreira; Filipe Neves Santos; Dias, J
6D Localization and Kicking for Humanoid Robotic Soccer (2021)
Article in International Scientific Journal
Miguel Abreu; Tiago Silva; Henrique Teixeira; Luís Paulo Reis; Nuno Lau
Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning (2020)
Article in International Scientific Journal
António Paulo Moreira

See all (25)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-12 at 09:30:52 | Privacy Policy | Personal Data Protection Policy | Whistleblowing