Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > c-Src deactivation by the polyphenol 3-O-caffeoylquinic acid abrogates reactive oxygen species-mediated glutamate release from microglia and neuronal excitotoxicity
Publication

Publications

c-Src deactivation by the polyphenol 3-O-caffeoylquinic acid abrogates reactive oxygen species-mediated glutamate release from microglia and neuronal excitotoxicity

Title
c-Src deactivation by the polyphenol 3-O-caffeoylquinic acid abrogates reactive oxygen species-mediated glutamate release from microglia and neuronal excitotoxicity
Type
Article in International Scientific Journal
Year
2015
Authors
Socodato, R
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Portugal, CC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Canedo, T
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Domith, I
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Oliveira, NA
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Paes de Carvalho, R
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Relvas, JB
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Cossenza, M
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 79
Pages: 45-55
ISSN: 0891-5849
Publisher: Elsevier
Other information
Authenticus ID: P-00A-1Z1
Abstract (EN): 3-O-caffeoylquinic acid (3-CQA) is an isomer of chlorogenic acid, which has been shown to regulate lipopolysaccharide-induced tumor necrosis factor production in microglia. Whereas overactivation of microglia is associated with neuronal loss in brain diseases via reactive oxygen species (ROS) production and glutamate excitotoxicity, naive (nonactivated) microglia are believed to generate little ROS under basal. conditions, contributing to the modulation of synaptic activity and nerve tissue repair. However, the signaling pathways controlling basal ROS homeostasis in microglial cells are still poorly understood. Here we used time-lapse microscopy coupled with highly sensitive FRET biosensors (for detecting c-Src activation, ROS generation, and glutamate release) and lentivirus-mediated shRNA delivery to study the pathways involved in antioxidant-regulated ROS generation and how this associates with microglia-induced neuronal cell death. We report that 3-CQA abrogates the acquisition of an amoeboid morphology in microglia triggered by A beta oligomers or the HIV Tat peptide. Moreover, 3-CQA deactivates c-Src tyrosine kinase and abrogates c-Src activation during proinflammatory microglia stimulation, which shuts off ROS production in these cells. Moreover, forced increment of c-Src catalytic activity by overexpressing an inducible c-Src heteromerization construct in microglia increases ROS production, abrogating the 3-CQA effects. Whereas oxidant (hydrogen peroxide) stimulation dramatically enhances glutamate release from microglia, such release is diminished by the 3-CQA inhibition of c-Src/ROS generation, significantly alleviating cell death in cultures from embryonic neurons. Overall, we provide further mechanistic insight into the modulation of ROS production in cortical microglia, indicating antioxidant-regulated c-Src function as a pathway for controlling microglia-triggered oxidative damage.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 11
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Inhibition of S1P by polyphenols prevents inflammation and angiogenesis: NF kappa B, a downstream effector? (2007)
Another Publication in an International Scientific Journal
soares, r; azevedo, i
Exploring natural profits: Development of novel and potent galloyl-cinnamic hybrids lipophilic antioxidants (2012)
Other Publications
Teixeira, J; Silva, T; Benfeito, S; Gaspar, A; Garrido, J; Fernanda Borges
Carotenoids inhibit peroxyl radical-induced oxidation of hemoglobin and lipids in human erythrocytes (2013)
Other Publications
Renan Campos Chiste; Marisa Freitas; Adriana Zerlotti Mercadante; Eduarda Fernandes
Bridging the gap between nature and antioxidant setbacks: Delivering hydroxybenzoic acids to mitochondria (2012)
Other Publications
Oliveira, C; Benfeito, S; Teixeira, J; Soares, P; Garrido, J; Fernanda Borges
The metabolism of sulindac enhances its scavenging activity against reactive oxygen and nitrogen species (2003)
Article in International Scientific Journal
Fernandes, E; Toste, SA; Lima, JLFC; Reis, S

See all (34)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-20 at 21:39:46 | Privacy Policy | Personal Data Protection Policy | Whistleblowing