Abstract (EN):
Dopamine and glutamate are critical neurotransmitters involved in light-induced synaptic activity in the retina. In brain neurons, dopamine D-1 receptors (D(1)Rs) and the cytosolic protein tyrosine kinase Src can, independently, modulate the behavior of NMDA-type glutamate receptors (NMDARs). Here we studied the interplay between D1Rs, Src and NMDARs in retinal neurons. We reveal that dopamine-mediated D1R stimulation provoked NMDAR hypofunction in retinal neurons by attenuating NMDA-gated currents, by preventing NMDA-elicited calcium mobilization and by decreasing the phosphorylation of NMDAR subunit GluN2B. This dopamine effect was dependent on upregulation of the canonical D1R/adenylylcyclase/cAMP/PKA pathway, of PKA-induced activation of C-terminal Src kinase (Csk) and of Src inhibition. Accordingly, knocking down Csk or overexpressing a Csk phosphoresistant Src mutant abrogated the dopamine-induced NMDAR hypofunction. Overall, the interplay between dopamine and NMDAR hypofunction, through the D1R/Csk/Src/GluN2B pathway, might impact on light-regulated synaptic activity in retinal neurons.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
14