Abstract (EN):
This paper investigates the issue of frequency regulation of a single-area alternating current (AC) power system connected to an electric vehicle (EV) aggregator through a nonideal communication network. It is assumed that the command control action is received by the EV aggregator with constant delay and the power system experiences uncertain parameters. A novel effective iterative algorithm, direct search, is proposed for the time-delayed system to design the gains of a proportional-integral (PI) controller. The proposed direct search algorithm can find a feasible solution whenever at least one solution lays in the space search. Thus, by choosing a wide space search, we can expect that the PI controller assures the closed-loop stability, theoretically. The proposed approach has low conservative results over the existing approaches. For the uncertain time-delayed system, a robust PI controller is designed, which is resilient against the system uncertainties and time delay. Numerical simulations are carried out to show the merits of the developed controller.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
7