Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Diagnosing Software Faults Using Multiverse Analysis
Publication

Publications

Diagnosing Software Faults Using Multiverse Analysis

Title
Diagnosing Software Faults Using Multiverse Analysis
Type
Article in International Conference Proceedings Book
Year
2020
Authors
Chatterjee, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Chatterjee, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Rui Abreu
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Roy, S
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Conference proceedings International
Indexing
Other information
Authenticus ID: P-00S-CRE
Abstract (EN): Spectrum-based Fault Localization (SFL) approaches aim to efficiently localize faulty components from examining program behavior. This is done by collecting the execution patterns of various combinations of components and the corresponding outcomes into a spectrum. Efficient fault localization depends heavily on the quality of the spectra. Previous approaches, including the current state-of-the-art Density- Diversity-Uniqueness (DDU) approach, attempt to generate ¿good¿ test-suites by improving certain structural properties of the spectra. In this work, we propose a different approach, Multiverse Analysis, that considers multiple hypothetical universes, each corresponding to a scenario where one of the components is assumed to be faulty, to generate a spectrum that attempts to reduce the expected worst-case wasted effort over all the universes. Our experiments show that the Multiverse Analysis not just improves the efficiency of fault localization but also achieves better coverage and generates smaller test-suites over DDU, the current state-of-the-art technique. On average, our approach reduces the developer effort over DDU by over 16% for more than 92% of the instances. Further, the improvements over DDU are indeed statistically significant on the paired Wilcoxon Signed-rank test.
Language: English
Type (Professor's evaluation): Scientific
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-09 at 11:45:42 | Privacy Policy | Personal Data Protection Policy | Whistleblowing