Abstract (EN):
We discuss the appearance of chaos in time-periodic perturbations of reversible vector fields in the plane. We use the normal forms of codimension 1 reversible vector fields and discuss the ways a time-dependent periodic forcing term of pulse form may be added to them to yield topological chaotic behaviour. Chaos here means that the resulting dynamics is semiconjugate to a shift in a finite alphabet. The results rely on the classification of reversible vector fields and on the theory of topological horseshoes. This work is part of a project of studying periodic forcing of symmetric vector fields.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
14