Abstract (EN):
Nitrilase 2 (Nit2) is a representative member of the nitrilase superfamily that catalyzes the hydrolysis of alpha-ketosuccinamate into oxaloacetate. It has been associated with the metabolism of rapidly dividing cells like cancer cells. The catalytic mechanism of Nit2 employs a catalytic triad formed by Cys191, Glu81 and Lys150. The Cys191 and Glu81 play an active role during the catalytic process while the Lys150 is shown to play only a secondary role. The results demonstrate that the catalytic mechanism of Nit2 involves four steps. The nucleophilic attack of Cys191 to the alpha-ketosuccinamate, the formation of two tetrahedral enzyme adducts and the hydrolysis of a thioacyl-enzyme intermediate, from which results the formation of oxaloacetate and enzymatic turnover. The rate limiting step of the catalytic process is the formation of the first tetrahedral intermediate with a calculated activation free energy of 18.4 kcal/mol, which agrees very well with the experimental k(cat) (17.67 kcal/mol).
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
10