Abstract (EN):
Hollow microsphere fiber sensors are Fabry-Perot interferometers ( FPI) that can be used for lateral loading, temperature, and refractive index sensing. In this work, graphene oxide (GO) is explored as a tunable platform for enhancing the spectral properties of hollow microsphere fiber sensors. GO offers similar mechanical and optical properties as graphene, with the advantage of a wider range of deposition methods and a lower cost. The influence of multilayer coatings of polyethylenimine (PEI) and GO, achieved with the layer-by-layer technique, on the reflectivity of the outer surface, and hence, on the spectrum of the FPI for maximum of 30 bilayers was studied. The obtained results revealed a change of the microsphere outer surface reflectivity and also of visibility of the reflected spectrum when varying the number of bilayers. A maximum signal amplitude of 3.9 dB was attained for the 13th bilayer, allowing to conclude that PEI/GO multilayer coatings can be used for enhancing desired properties of the three-wave FPI for different sensing applications.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
5