Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Visual Trunk Detection Using Transfer Learning and a Deep Learning-Based Coprocessor
Publication

Publications

Visual Trunk Detection Using Transfer Learning and a Deep Learning-Based Coprocessor

Title
Visual Trunk Detection Using Transfer Learning and a Deep Learning-Based Coprocessor
Type
Article in International Scientific Journal
Year
2020
Authors
Aguiar, AS
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Armando Jorge Sousa
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Oliveira, PM
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Santos, LC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Journal
Title: IEEE AccessImported from Authenticus Search for Journal Publications
Vol. 8
ISSN: 2169-3536
Publisher: IEEE
Other information
Authenticus ID: P-00R-ZY4
Abstract (EN): Agricultural robotics is nowadays a complex, challenging, and exciting research topic. Some agricultural environments present harsh conditions to robotics operability. In the case of steep slope vineyards, there are several challenges: terrain irregularities, characteristics of illumination, and inaccuracy/unavailability of signals emitted by the Global Navigation Satellite System (GNSS). Under these conditions, robotics navigation becomes a challenging task. To perform these tasks safely and accurately, the extraction of reliable features or landmarks from the surrounding environment is crucial. This work intends to solve this issue, performing accurate, cheap, and fast landmark extraction in steep slope vineyard context. To do so, we used a single camera and an Edge Tensor Processing Unit (TPU) provided by Google & x2019;s USB Accelerator as a small, high-performance, and low power unit suitable for image classification, object detection, and semantic segmentation. The proposed approach performs object detection using Deep Learning (DL)-based Neural Network (NN) models on this device to detect vine trunks. To train the models, Transfer Learning (TL) is used on several pre-trained versions of MobileNet V1 and MobileNet V2. A benchmark between the two models and the different pre-trained versions is performed. The models are pre-trained in a built in-house dataset, that is publicly available containing 336 different images with approximately 1,600 annotated vine trunks. There are considered two vineyards, one using camera images with the conventional infrared filter and others with an infrablue filter. Results show that this configuration allows a fast vine trunk detection, with MobileNet V2 being the most accurate retrained detector, achieving an overall Average Precision of 52.98 & x0025;. We briefly compare the proposed approach with the state-of-the-art Tiny YOLO-V3 running on Jetson TX2, showing the outperformance of the adopted system in this work. Additionally, it is also shown that the proposed detectors are suitable for the Localization and Mapping problems.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 13
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Understanding Business Models for the Adoption of Electric Vehicles and Charging Stations: Challenges and Opportunities in Brazil (2023)
Another Publication in an International Scientific Journal
Bitencourt, L; Dias, B; Soares, T; Borba, B; Quirós Tortós, J; Costa, V
Space Imaging Point Source Detection and Characterization (2024)
Another Publication in an International Scientific Journal
Ribeiro, FSF; P. J. V. Garcia; Silva, M; Jaime S Cardoso
Key Indicators to Assess the Performance of LiDAR-Based Perception Algorithms: A Literature Review (2023)
Another Publication in an International Scientific Journal
José Machado da Silva; K. Chiranjeevi; Correia, M. V.
IEEE ACCESS SPECIAL SECTION EDITORIAL: SOFT COMPUTING TECHNIQUES FOR IMAGE ANALYSIS IN THE MEDICAL INDUSTRY - CURRENT TRENDS, CHALLENGES AND SOLUTIONS (2018)
Another Publication in an International Scientific Journal
D. Jude Hemanth; Lipo Wang; João Manuel R. S. Tavares; Fuqian Shi; Vania Vieira Estrela
Generating Synthetic Missing Data: A Review by Missing Mechanism (2019)
Another Publication in an International Scientific Journal
Santos, MS; Pereira, RC; Costa, AF; Soares, JP; Santos, J; Pedro Henriques Abreu

See all (105)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-06 at 21:29:57 | Privacy Policy | Personal Data Protection Policy | Whistleblowing