Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > A dynamic model for once-through direct steam generation in linear focus solar collectors
Publication

Publications

A dynamic model for once-through direct steam generation in linear focus solar collectors

Title
A dynamic model for once-through direct steam generation in linear focus solar collectors
Type
Article in International Scientific Journal
Year
2021
Authors
João Soares
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Armando C. Oliveira
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Loreto Valenzuela
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: Renewable EnergyImported from Authenticus Search for Journal Publications
Vol. 163
Pages: 246-261
ISSN: 0960-1481
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em ISI Web of Science ISI Web of Science
Other information
Authenticus ID: P-00S-P1E
Abstract (EN): Direct Steam Generation in parabolic trough solar collectors is one of the most promising alternatives for replacing the use of thermal oil in solar power plants and process heat. The main advantages are: elimination of steam generator heat exchangers; use of a non-toxic fluid; operation with power cycle higher temperatures, therefore with higher efficiency. Nevertheless, modelling the two-phase flow heat transfer is a complex task, and there is a lack of modular simulation tools that can easily be replicable for different configurations. In this work, a quasi-dynamic model developed for once-through direct steam generation, using Ebsilon professional software is presented and its results are assessed against experimental results from a test campaign carried out at the DISS test facility. The modelling methodology consists in splitting the solar field into individual components for which modelling and performance are assessed at a detailed level. Quasi-dynamic simulations are feasible by the combination of dynamic components and a time-series, where calculations are carried out for each timestep. The model is highly versatile, both at the system configuration and simulation levels. The model performance was evaluated by comparing simulation and experimental results for different operation stages, i.e. start-up, cool-down, steady and transient solar radiation.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 16
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Marine renewable energy (2020)
Another Publication in an International Scientific Journal
Francisco Taveira Pinto; Paulo Rosa Santos; Tiago Ferradosa
Wood pellets as a sustainable energy alternative in Portugal (2016)
Article in International Scientific Journal
João Catalão; L.J.R. Nunes; J.C.O. Matias
Wave Energy Flux Variability and Trend along the United Arab Emirates Coastline based on a 40-year Hindcast (2020)
Article in International Scientific Journal
Francisco Taveira Pinto; Filipe Vieira; G. Cavalgante; E. Campos
Wave energy conversion energizing offshore aquaculture: Prospects along the Portuguese coastline (2023)
Article in International Scientific Journal
Daniel Clemente; Paulo Rosa Santos; Tiago Ferradosa; Francisco Taveira Pinto
Vanadium (oxy)nitride as a new category of anode for direct ammonia solid oxide fuel cells cells (2022)
Article in International Scientific Journal
Laura Holz; Francisco Loureiro; Vanessa Graça; Sergey Mikhalev; Diogo Mendes; Adélio Mendes; Duncan Fagg

See all (68)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-20 at 21:01:56 | Privacy Policy | Personal Data Protection Policy | Whistleblowing