Abstract (EN):
Directive-driven programming models, such as OpenMP, are one solution for exploring the potential parallelism when targeting multicore architectures. Although these approaches significantly help developers, code parallelization is still a non-trivial and time-consuming process, requiring parallel programming skills. Thus, many efforts have been made toward automatic parallelization of the existing sequential code. This article presents AutoPar-Clava, an OpenMP-based automatic parallelization compiler which: (1) statically detects parallelizable loops in C applications; (2) classifies variables used inside the target loop based on their access pattern; (3) supportsreductionclauses on scalar and array variables whenever it is applicable; and (4) generates a C OpenMP parallel code from the input sequential version. The effectiveness of AutoPar-Clava is evaluated by using the NAS and Polyhedral Benchmark suites and targeting a x86-based computing platform. The achieved results are very promising and compare favorably with closely related auto-parallelization compilers, such as Intel C/C++ Compiler (icc), ROSE, TRACO and CETUS.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
33