Abstract (EN):
In this article we investigate the combination of meta-learning and optimization algorithms for parameter selection. We discuss our general proposal as well as present the recent develop-ments and experiments performed using Support Vector Machines (SVMs). Meta-learning was combined to single and multi-objective optimization techniques to select SVM parameters. The hybrid meth-ods derived from the proposal presented better results on predictive accuracy than the use of traditional optimization techniques.
Language:
English
Type (Professor's evaluation):
Scientific