Abstract (EN):
The advances achieved during the last 30 years demonstrate the aptitude of the remote sensing-based vegetation indices (VI) for the assessment of crop evapotranspiration (ETc) and irrigation requirements in a simple, robust and operative manner. The foundation of these methodologies is the well-established relationship between the VIs and the basal crop coefficient (K-cb), resulting from the ability of VIs to measure the radiation absorbed by the vegetation, as the main driver of the evapotranspiration process. In addition, VIs have been related with single crop coefficient (K-c), assuming constant rates of soil evaporation. The direct relationship between VIs and ET is conceptually incorrect due to the effect of the atmospheric demand on this relationship. The rising number of Earth Observation Satellites potentiates a data increase to feed the VI-based methodologies for estimating and mapping either the K-c or K-cb, with improved temporal coverage and spatial resolution. The development of operative platforms, including satellite constellations like Sentinels and drones, usable for the assessment of K-cb through VIs, opens new possibilities and challenges. This work analyzes some of the questions that remain inconclusive at scientific and operational level, including: (i) the diversity of the K-cb-VI relationships defined for different crops, (ii) the integration of K-cb-VI relationships in more complex models such as soil water balance, and (iii) the operational application of K-cb-VI relationships using virtual constellations of space and aerial platforms that allow combining data from two or more sensors.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
17