Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Main Factors Driving the Open Rate of Email Marketing Campaigns
Publication

Publications

Main Factors Driving the Open Rate of Email Marketing Campaigns

Title
Main Factors Driving the Open Rate of Email Marketing Campaigns
Type
Article in International Conference Proceedings Book
Year
2019
Authors
Conceição, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
João Gama
(Author)
FEP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Conference proceedings International
Pages: 145-154
22nd International Conference on Discovery Science, DS 2019
28 October 2019 through 30 October 2019
Indexing
Other information
Authenticus ID: P-00R-FC6
Abstract (EN): Email Marketing is one of the most important traffic sources in Digital Marketing. It yields a high return on investment for the company and offers a cheap and fast way to reach existent or potential clients. Getting the recipients to open the email is the first step for a successful campaign. Thus, it is important to understand how marketers can improve the open rate of a marketing campaign. In this work, we analyze what are the main factors driving the open rate of financial email marketing campaigns. For that purpose, we develop a classification algorithm that can accurately predict if a campaign will be labeled as Successful or Failure. A campaign is classified as Successful if it has an open rate higher than the average, otherwise it is labeled as Failure. To achieve this, we have employed and evaluated three different classifiers. Our results showed that it is possible to predict the performance of a campaign with approximately 82% accuracy, by using the Random Forest algorithm and the redundant filter selection technique. With this model, marketers will have the chance to sooner correct potential problems in a campaign that could highly impact its revenue. Additionally, a text analysis of the subject line and preheader was performed to discover which keywords and keyword combinations trigger a higher open rate. The results obtained were then validated in a real setting through A/B testing. © Springer Nature Switzerland AG 2019.
Language: English
Type (Professor's evaluation): Scientific
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-25 at 00:50:07 | Privacy Policy | Personal Data Protection Policy | Whistleblowing