Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > A drift detection method based on dynamic classifier selection
Publication

Publications

A drift detection method based on dynamic classifier selection

Title
A drift detection method based on dynamic classifier selection
Type
Article in International Scientific Journal
Year
2020
Authors
Pinage, F
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
dos Santos, EM
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
João Gama
(Author)
FEP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 34
Pages: 50-74
ISSN: 1384-5810
Publisher: Springer Nature
Other information
Authenticus ID: P-00R-97D
Abstract (EN): Machine learning algorithms can be applied to several practical problems, such as spam, fraud and intrusion detection, and customer preferences, among others. In most of these problems, data come in streams, which mean that data distribution may change over time, leading to concept drift. The literature is abundant on providing supervised methods based on error monitoring for explicit drift detection. However, these methods may become infeasible in some real-world applications-where there is no fully labeled data available, and may depend on a significant decrease in accuracy to be able to detect drifts. There are also methods based on blind approaches, where the decision model is updated constantly. However, this may lead to unnecessary system updates. In order to overcome these drawbacks, we propose in this paper a semi-supervised drift detector that uses an ensemble of classifiers based on self-training online learning and dynamic classifier selection. For each unknown sample, a dynamic selection strategy is used to choose among the ensemble's component members, the classifier most likely to be the correct one for classifying it. The prediction assigned by the chosen classifier is used to compute an estimate of the error produced by the ensemble members. The proposed method monitors such a pseudo-error in order to detect drifts and to update the decision model only after drift detection. The achievement of this method is relevant in that it allows drift detection and reaction and is applicable in several practical problems. The experiments conducted indicate that the proposed method attains high performance and detection rates, while reducing the amount of labeled data used to detect drift.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 25
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Guest editors introduction: special issue of the ECMLPKDD 2015 journal track (2015)
Another Publication in an International Scientific Journal
Bielza, C; João Gama; Jorge, AM; Zliobaite, I
Guest Editorial: Special Issue on Data Mining for Geosciences (2019)
Another Publication in an International Scientific Journal
Jorge, AM; Lopes, RL; Larrazabal, G; Nikhalat Jahromi, H
Very fast decision rules for classification in data streams (2015)
Article in International Scientific Journal
Kosina, P; João Gama
Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality (2015)
Article in International Scientific Journal
Carlos Saez; Pedro Pereira Rodrigues; João Gama; Montserrat Robles; Juan M Garcia Gomez
Novel features for time series analysis: a complex networks approach (2022)
Article in International Scientific Journal
Silva, VF; Maria Eduarda Silva; Pedro Ribeiro; Silva, F

See all (14)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-16 at 21:52:06 | Privacy Policy | Personal Data Protection Policy | Whistleblowing