Resumo (PT):
Abstract (EN):
Additive manufacturing processes is now experiencing significant growth and is at the origin of intense research activity (optimization of topology, biomedical applications, etc.). One of the characteristics of this method is that the geometric complexity is free. The complexity of a CAD model is also a field of research. The basic idea is that the complexity of a component has implications in design and especially in manufacturing. Indeed, industrial competitiveness in the mechanical field generated the need to produce increasingly complex systems and parts (in terms of geometry, topology ...). Part deposition orientation is also very important factor of additive manufacturing as it effects build time, support structure, dimensional accuracy, surface finish and cost of the part. A number of layered manufacturing process specific parameters and constraints have to be considered while deciding the part deposition orientation. Determination of an optimal part deposition orientation is a difficult and time consuming task as one has to trade-off among various contradicting objectives like part surface finish and build time. This paper describes and compares various attempts made to determine part deposition orientation of orthoses using geometric complexity model and part CAD information. © Springer Nature Switzerland AG 2019.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
10