Abstract (EN):
Asteroseismology has been extremely successful in determining the properties of stars in different evolutionary stages with a remarkable level of precision. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification of the results is needed. In this talk, I present a new technique developed to obtain stellar properties by coupling asteroseismic analysis with the infrared flux method. Using two global seismic observables and multi-band photometry, the technique determines masses, radii, effective temperatures, bolometric fluxes, and thus distances for field stars in a self-consistent manner. Applying our method to a sample of solar-like oscillators in the Kepler field that have accurate Hipparcos parallaxes, we find agreement in our distance determinations to better than 5%. Comparison with measurements of spectroscopic effective temperatures and interferometric radii also validate our results, and show that our technique can be applied to stars evolved beyond the main-sequence phase. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
4