Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Hierarchical optimisation strategy for energy scheduling and volt/var control in autonomous clusters of microgrids
Publication

Publications

Hierarchical optimisation strategy for energy scheduling and volt/var control in autonomous clusters of microgrids

Title
Hierarchical optimisation strategy for energy scheduling and volt/var control in autonomous clusters of microgrids
Type
Article in International Scientific Journal
Year
2020
Authors
Manuel V. Castro
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Carlos L. Moreira
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 14 No. 1
Pages: 27-38
ISSN: 1752-1416
Publisher: Wiley-Blackwell
Other information
Authenticus ID: P-00Q-HNN
Abstract (EN): This study proposes a hierarchical optimisation strategy for the energy dispatch and volt/var control problem of a photovoltaic-battery microgrid cluster (MGC) operating autonomously. The proposed approach takes advantage of the decentralised control architecture existing in multi-microgrids (MMGs) framework by distributing the management responsibilities between the microgrid central controllers (MGCCs) and the central autonomous management controller (CAMC). In the first stage, the optimisation strategy solves a multi-temporal active power scheduling problem for the MGC based on consumption and generation forecasts. In the second stage, the reactive power and volt/var control are addressed by taking into account the medium-voltage (MV) and low-voltage levels independently. For this purpose, each MGCC computes the V(Q) capability area of operation at the boundary bus with the MV grid. Then, the CAMC performs an optimal power flow at the MV level for each time step, whose results at the boundary bus are considered in the last stage to schedule reactive power at the MGCC level. The effectiveness of the proposed strategy is demonstrated in a cluster of three microgrids. It keeps the modularity, interoperability and scalability characteristics of the MMG concept by clearly defining the roles and the information to be exchanged between the CAMC and the MGCC.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 12
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Guest Editorial: Demand Side Management and Market Design for Renewable Energy Support and Integration (2019)
Another Publication in an International Scientific Journal
Catalao, JPS; Siano, P; Contreras, J; Chicco, G; Erdinc, O; Masoum, M; Aghaei, J; Wang, F; Li, FX; Bakirtzis, A; Parvania, M
Robust tuning of power system stabilisers to install in wind energy conversion systems (2009)
Article in International Scientific Journal
Ângelo Miguel de Oliveira Mendonça; João Abel Peças Lopes
Probabilistic methodology for estimating the optimal photovoltaic capacity in distribution systems to avoid power flow reversals (2018)
Article in International Scientific Journal
Juan M. Lujano-Rojas; Rodolfo Dufo-López; José L. Bernal-Agustín; José A. Domínguez-Navarro; João P. S. Catalão
Power system flexibility improvement with a focus on demand response and wind power variability (2020)
Article in International Scientific Journal
Dadkhah, A; Vahidi, B; Shafie khah, M; Catalao, JPS
Optimal sizing and siting of smart microgrid components under high renewables penetration considering demand response (2019)
Article in International Scientific Journal
Hakimi, SM; Hasankhani, A; Shafie Khah, M; Catalao, JPS

See all (18)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-24 at 18:58:54 | Privacy Policy | Personal Data Protection Policy | Whistleblowing