Abstract (EN):
This paper presents MicroFactory - a simplified version of the Robot@Factory competition. This version of the competition was conceived to be low-cost and easily implementable in a small space, be it a classroom or the school robotics club. The factory scenario size was originally 3.5m by 2.5m. The floor is now an A0 printed sheet and the warehouses and machines dimensions are so that they can be 3D printed or made out of LEGO (TM) bricks. Both machines and parts had active elements with leds; now they are passive. Robot@Factory is a Portuguese robotic competition whose first edition was held in 2011 in Lisbon. The scenario of the competition simulates a factory which has an Incoming Warehouse, an Outgoing Warehouse, and 8 processing machines. The robots must collect, transport and position the materials, self-localize and navigate while avoiding collisions with walls, obstacles and other robots. Participants' research contributes to improve AGVs (Automated Guided Vehicle systems) technology. Robot@Factory is now integrated in Festival Nacional de Robotica, a yearly event which attracts lots of public, contributing also to STEM (Science, Technology, Engineering and Mathematics) popularization. MicroFactory's main contribution is different - enhancing learning and the undergraduate experience in robotics. While Robot@Factory is intended for groups with high skills, MicroFactory is supposed to attract younger and less skilled people. So, the proposed challenges were simplified. It was also designed an official robot for the MicroFactory competition. It's a 3D printed robot, based on Arduino and low cost common electronic parts. CAD files for the mechanics (and every bit of the factory scenario), the hardware schematics and most of the software can be made available to the organizers or teachers trying to implement didactic experiences involving robotics. The challenge may then be reduced from developing a robot from scratch to implementing just a small part like programming the navigation algorithm. The presented work is part of a wider Open Source project, aiming to develop project-based collaborative didactic experiences involving robotics to foster STEM education, and low-cost 3D printed educational robots based on generic electronics to support those experiences.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
9