Resumo (PT):
Abstract (EN):
The segmentation and characterization of the lung lobes are important tasks for Computer Aided Diagnosis (CAD) systems related to pulmonary disease. The detection of the fissures that divide the lung lobes is non-trivial when using classical methods that rely on anatomical information like the localization of the airways and vessels. This work presents a fully automatic and supervised approach to the problem of the segmentation of the five pulmonary lobes from a chest Computer Tomography (CT) scan using a Fully RegularizedV-Net (FRV- Net), a 3D Fully Convolutional Neural Network trained end-to- end. Our network was trained and tested in a custom dataset that we make publicly available. It can correctly separate the lobes even in cases when the fissure is not well delineated, achieving 0.93 in per-lobe Dice Coefficient and 0.85 in the inter-lobar Dice Coefficient in the test set. Both quantitative and qualitative results show that the proposed method can learn to produce correct lobe segmentations even when trained on a reduced dataset. © 2018 IEEE.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
8