Abstract (EN):
Remote sensing has proved to be a powerful resource in geology capable of delineating target exploration areas for several deposit types. Only recently, these methodologies have been used for the detection of lithium (Li)-bearing pegmatites. This happened because of the growing importance and demand of Li for the construction of Li-ion batteries for electric cars. The objective of this study was to develop innovative and effective remote sensing methodologies capable of identifying Li-pegmatites through alteration mapping and through the direct identification of Li-bearing minerals. For that, cloud free Landsat-5, Landsat-8, Sentinel-2 and ASTER images with low vegetation coverage were used. The image processing methods included: RGB (red, green, blue) combinations, band ratios and selective principal component analysis (PCA). The study area of this work is the Fregeneda (Salamanca, Spain)-Almendra (Vila Nova de Foz Coa, Portugal) region, where different known types of Li-pegmatites have been mapped. This study proposes new RGB combinations, band ratios and subsets for selective PCA capable of differentiating the spectral signatures of the Li-bearing pegmatites from the spectral signatures of the host rocks. The potential and limitations of the methodologies proposed are discussed, but overall there is a great potential for the identification of Li-bearing pegmatites using remote sensing. The results obtained could be improved using sensors with a better spatial and spectral resolution.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
16