Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Mechanistic Insights on Human Phosphoglucomutase Revealed by Transition Path Sampling and Molecular Dynamics Calculations
Publication

Publications

Mechanistic Insights on Human Phosphoglucomutase Revealed by Transition Path Sampling and Molecular Dynamics Calculations

Title
Mechanistic Insights on Human Phosphoglucomutase Revealed by Transition Path Sampling and Molecular Dynamics Calculations
Type
Article in International Scientific Journal
Year
2018
Authors
Natercia F Bras
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Ramos, MJ
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Schwartz, SD
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 24
Pages: 1978-1987
ISSN: 0947-6539
Publisher: Wiley-Blackwell
Other information
Authenticus ID: P-00N-KNZ
Abstract (EN): Human a-phosphoglucomutase 1 (alpha-PGM) catalyzes the isomerization of glucose-1-phosphate into glucose-6-phosphate (G6P) through two sequential phosphoryl transfer steps with a glucose-1,6-bisphosphate (G16P) intermediate. Given that the release of G6P in the gluconeogenesis raises the glucose output levels, alpha-PGM represents a tempting pharmacological target for type 2 diabetes. Here, we provide the first theoretical study of the catalytic mechanism of human a-PGM. We performed transition-path sampling simulations to unveil the atomic details of the two catalytic chemical steps, which could be key for developing transition state (TS) analogue molecules with inhibitory properties. Our calculations revealed that both steps proceed through a concerted SN2-like mechanism, with a loose metaphosphate-like TS. Even though experimental data suggests that the two steps are identical, we observed noticeable differences: 1) the transition state ensemble has a well-defined TS region and a late TS for the second step, and 2) larger coordinated protein motions are required to reach the TS of the second step. We have identified key residues (Arg23, Ser117, His118, Lys389), and the Mg2+ ion that contribute in different ways to the reaction coordinate. Accelerated molecular dynamics simulations suggest that the G16P intermediate may reorient without leaving the enzymatic binding pocket, through significant conformational rearrangements of the G16P and of specific loop regions of the human alpha-PGM.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 10
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Inside Cover: The Catalytic Mechanism of the Marine-Derived Macrocyclase PatGmac (Chem. Eur. J. 37/2016) (2016)
Another Publication in an International Scientific Journal
Natercia F Bras; Ferreira, P; Calixto, AR; Jaspars, M; Houssen, W; Naismith, JH; Pedro A Fernandes; Ramos, MJ
Developments Towards Regioselective Synthesis of 1,2-Disubstituted Benzimidazoles (2011)
Another Publication in an International Scientific Journal
Luisa C R Carvalho; Eduarda Fernandes; Manuel M B Marques
Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation (2010)
Article in International Scientific Journal
Claudia Gomes Silva; Ignacio Luz; Francesc X L I Llabres i Xamena; Avelino Corma; Hermenegildo Garcia
Understanding ribonucleotide reductase inactivation by gemcitabine (2007)
Article in International Scientific Journal
Nuno M F S A Cerqueira; Pedro A Fernandes; Maria L Ramos

See all (38)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-05 at 23:42:12 | Privacy Policy | Personal Data Protection Policy | Whistleblowing