Abstract (EN):
Medical data is particularly interesting as a subject for relational data mining due to the complex interactions which exist between different entities. Furthermore, the ambiguity of medical imaging causes interpretation to be complex and error-prone, and thus particularly amenable to improvement through automated decision support. Probabilistic Inductive Logic Programming (PILP) is a particularly well-suited tool for this task, since it makes it possible to combine the relational nature of this field with the ambiguity inherent in human interpretation of medical imaging. This work presents a PILP setting for breast cancer data, where several clinical and demographic variables were collected retrospectively, and new probabilistic variables and rules reflecting domain knowledge were introduced. A PILP predictive model was built automatically from this data and experiments show that it can not only match the predictions of a team of experts in the area, but also consistently reduce the error rate of malignancy prediction, when compared to other non-relational techniques. © Springer International Publishing AG, part of Springer Nature 2018.
Language:
English
Type (Professor's evaluation):
Scientific