Abstract (EN):
We present various identities involving the classical Bernoulli and Euler polynomials. Among others, we prove that [ Sigma n/ 4] k= 0 (- 1) k Sigma n 4k Sigma Bn- 4k( z) 26k = 1 2n+ 1 Sigma n k= 0 (- 1) k 1 + ik ( 1 + i) k Sigma n k Sigma Bn- k( 2z) and Sigma n k= 1 22k- 1 Sigma 2n 2k - 1 Sigma B2k- 1( z) = Sigma n k= 1 k22k Sigma 2n 2k Sigma E2k- 1( z). Applications of our results lead to formulae for Bernoulli and Euler numbers, like, for instance, nEn- 1 = [ Sigma n/ 2] k= 1 22k - 1 k ( 22k - 2n) Sigma n 2k - 1 Sigma B2kBn- 2k.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
19