Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem
Publication

Publications

Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem

Title
Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem
Type
Article in International Scientific Journal
Year
2019
Authors
Alvaro Neuenfeldt Júnior
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Elsa Silva
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Carlos Soares
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 118
Pages: 365-380
ISSN: 0957-4174
Publisher: Elsevier
Other information
Authenticus ID: P-00P-RAK
Abstract (EN): In this paper, we explore the use of reference values (predictors) for the optimal objective function value of hard combinatorial optimization problems, instead of bounds, obtained by data mining techniques, and that may be used to assess the quality of heuristic solutions for the problem. With this purpose, we resort to the rectangular two-dimensional strip-packing problem (2D-SPP), which can be found in many industrial contexts. Mostly this problem is solved by heuristic methods, which provide good solutions. However, heuristic approaches do not guarantee optimality, and lower bounds are generally used to give information on the solution quality, in particular, the area lower bound. But this bound has a severe accuracy problem. Therefore, we propose a data mining-based framework capable of assessing the quality of heuristic solutions for the 2D-SPP. A regression model was fitted by comparing the strip height solutions obtained with the bottom-left-fill heuristic and 19 predictors provided by problem characteristics. Random forest was selected as the data mining technique with the best level of generalisation for the problem, and 30,000 problem instances were generated to represent different 2D-SPP variations found in real-world applications. Height predictions for new problem instances can be found in the regression model fitted. In the computational experimentation, we demonstrate that the data mining-based framework proposed is consistent, opening the doors for its application to finding predictions for other combinatorial optimisation problems, in particular, other cutting and packing problems. However, how to use a reference value instead of a bound, has still a large room for discussion and innovative ideas. Some directions for the use of reference values as a stopping criterion in search algorithms are also provided.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 16
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Towards a data privacy-predictive performance trade-off (2023)
Another Publication in an International Scientific Journal
Carvalho, T; Moniz, N; Faria, P; antunes, l
Learning path personalization and recommendation methods: A survey of the state-of-the-art (2020)
Another Publication in an International Scientific Journal
Nabizadeh, AH; José Paulo Leal; Rafsanjani, HN; Shah, RR
Time-evolving O-D matrix estimation using high-speed GPS data streams (2016)
Article in International Scientific Journal
Luís Moreira-Matias; João Gama; Michel Ferreira; João Mendes-Moreira; Luís Damas
Three-dimensional guillotine cutting problems with constrained patterns: MILP formulations and a bottom-up algorithm (2021)
Article in International Scientific Journal
Mateus Martin; José Fernando Oliveira; Elsa Silva; Reinaldo Morabito; Pedro Munari
The 'Healthcare Access and Quality Index' revisited: A fuzzy data envelopment analysis approach (2024)
Article in International Scientific Journal
Pereira, MA; Ana Maria Cunha Ribeiro dos Santos Ponces Camanho

See all (53)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-07 at 11:38:06 | Privacy Policy | Personal Data Protection Policy | Whistleblowing