Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Operational scheduling of a smart distribution system considering electric vehicles parking lot: A bi-level approach
Publication

Publications

Operational scheduling of a smart distribution system considering electric vehicles parking lot: A bi-level approach

Title
Operational scheduling of a smart distribution system considering electric vehicles parking lot: A bi-level approach
Type
Article in International Scientific Journal
Year
2019
Authors
Sadati, SMB
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Moshtagh, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Shafie Khah, M
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Rastgou, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 105
Pages: 159-178
ISSN: 0142-0615
Publisher: Elsevier
Other information
Authenticus ID: P-00P-HMP
Abstract (EN): In this paper, a new bi-level framework is presented for operational scheduling of a smart distribution company (SDISCO) with electric vehicle (EV) parking lot (PL) and renewable energy sources (RES), i.e., wind and photovoltaic (PV) units. In the proposed bi-level model, maximization of the profit of SDISCO is obtained in the upper-level (leader) problem by minimizing the cost of power purchased from the wholesale market due to the EV PL unique capability, i.e., PL-to-grid. The lower-level (follower) problem aims to maximize the profit of the PL owner. This model is converted to a non-linear single-level problem by using Karush-Kuhn-Tucker (KKT) conditions. Fortuny-Amat and McCarl method is used for linearization based on auxiliary binary variables and sufficiently large constants. Moreover, uncertainties such as duration of the presence of EVs in PL, the initial state of the charge (SOC) of EVs and output power generation of wind and PV units are simultaneously considered through a set of scenarios. The SDISCO's profit is investigated in four modes: (1) without RES and with the controlled charging of EVs; (2) without RES and with smart charging/discharging of EVs; (3) with RES and with the controlled charging of EVs; (4) with RES and with smart charging/discharging of EVs. In all these modes, a price-based demand response (DR) program is considered, as well as incentive-based DR, and combined price-based DR and incentive-based DR. The presented model is tested on the IEEE 15-bus distribution system over a 24-h period. The results show that SDISCO gains more profit by using a suitable charging/discharging schedule and employing a critical peak pricing (CPP) program. Furthermore, by comparing this bi-level model with the centralized model, the effectiveness of the bi-level model is demonstrated. Also, sensitivity analyses on the number of EVs, size of RES and the percentage of customer participation in the DR program are evaluated on the optimal operation of the SDISCO.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 20
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Optimal charge scheduling of electric vehicles in solar energy integrated power systems considering the uncertainties (2020)
Chapter or Part of a Book
Sadati, SMB; Moshtagh, J; Shafie Khah, M; Rastgou, A; Catalão, JPS

Of the same journal

Rooftop photovoltaic parking lots to support electric vehicles charging: A comprehensive survey (2021)
Another Publication in an International Scientific Journal
Osorio, JG; Gough, M; Lotfi, M; Santos, FS; Espassandim, MDH; Shafie khah, M; Catalao, PSJ
Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: A comprehensive review (2019)
Another Publication in an International Scientific Journal
Pourbehzadi, M; Niknam, T; Aghaei, J; Mokryani, G; Shafie khah, M; Catalao, JPS
Comprehensive review on the strategies for controlling the interconnection of AC and DC microgrids (2022)
Another Publication in an International Scientific Journal
Zolfaghari, M; Gharehpetian, GB; Shafie khah, M; Catalao, JPS
Comprehensive review on the decision-making frameworks referring to the distribution network operation problem in the presence of distributed energy resources and microgrids (2020)
Another Publication in an International Scientific Journal
Bahramara, S; Mazza, A; Chicco, G; Shafie khah, M; Catalao, JPS
Wind variability mitigation using multi-energy systems (2020)
Article in International Scientific Journal
António Coelho; Nilufar Neyestani; Filipe Joel Soares; João Peças Lopes

See all (73)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-15 at 04:33:11 | Privacy Policy | Personal Data Protection Policy | Whistleblowing