Abstract (EN):
In recent years various methods from the field of artificial intelligence (AI) have been applied to economic problems. The subarea of multiagent systems (MAS) is particularly useful as it enables to simulate individuals or organizations and various interactions among them. In this paper we investigate a scenario with a set of agents, each belonging to a certain sector of activity (e.g. agriculture, clothing, health sector etc.). The agents produce, consume goods or services in their area of activity. Besides, our model includes also the resource of free time. The goods and resources are exchanged on a market governed by auction, which determines the prices of all goods. We discuss the problem of developing an adaptive producer that exploits reward-based learning. This facet enables the agent to exploit previous information gathered and adapt its production to the current conditions. We describe a set of experiments that show how such information can be gathered and explored in decision making. Besides, we describe a scheme that we plan to adopt in a full-fledged experiments in near future.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
19