Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Electrodeposition of ZnO thin films on conducting flexible substrates
Publication

Publications

Electrodeposition of ZnO thin films on conducting flexible substrates

Title
Electrodeposition of ZnO thin films on conducting flexible substrates
Type
Article in International Scientific Journal
Year
2016
Authors
Oliveira, FF
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
proenca, m. p.
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
araujo, j. p.
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
ventura, j.
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 51
Pages: 5589-5597
ISSN: 0022-2461
Publisher: Springer Nature
Other information
Authenticus ID: P-00K-98Y
Abstract (EN): In this work, we studied the DC electrochemical deposition of zinc oxide (ZnO) thin films on a conducting and flexible substrate, for their application in energy harvesting piezoelectric nanodevices. The deposition process was performed by varying the zinc nitrate concentration (c) in the electrolyte, its temperature (T), and the applied deposition potential (V), and subsequently tracing the influence of such parameters on the morphology (analyzed by scanning electron microscopy), crystallography (X-ray diffraction), and thickness (using the deposition current transient curves) of the ZnO thin films. The variation of the electrodeposition parameters led to the formation of different micro- and nano-structures, such as flat layers, microflowers, nanospheres, webs, and microramifications. Furthermore, the analysis of the deposited charge (by integrating the deposition current transients) illustrated an increase in the deposition rate with the increase of T and c, and a decrease of V. Finally, the maximum ZnO film thickness (similar to 5 ) was obtained for T = 80 A degrees C, c = 0.1 M, and V = -1.5 V. This study provides us important tools to tune the electrochemical growth of ZnO thin films.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 9
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Output Potential of ZnO Nanowires: Influence of Geometrical Parameters (2016)
Article in International Scientific Journal
Oliveira, FF; proenca, m. p.; araujo, j. p.; ventura, j.

Of the same journal

Nanomaterials with high solar reflectance as an emerging path towards energy-efficient envelope systems: a review (2021)
Another Publication in an International Scientific Journal
Veloso, RC; Souza, A; Maia, J; Nuno Ramos; ventura, j.
Modified-release topical hydrogels: a ten-year review (2019)
Another Publication in an International Scientific Journal
Croisfelt, FM; Tundisi, LL; Ataide, JA; Silveira, E; Tambourgi, EB; Jozala, AF; Souto, EMB; Mazzola, PG
Use of single wall carbon nanohorns in polymeric electrolyte fuel cells (2011)
Article in International Scientific Journal
Brandão, L.; Passeira, C.; Gattia, D.M.; Mendes, A.
Thin film deposition of organic hole transporting materials: optical, thermodynamic and morphological properties of naphthyl-substituted benzidines (2018)
Article in International Scientific Journal
José C. S. Costa; Adélio Mendes; Luís M. N. B. F. Santos
The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) composites (2012)
Article in International Scientific Journal
Sónia Carabineiro; Manuel Fernando R Pereira; Nunes Pereira, J; Silva, J; Caparros, C; Sencadas, V; Lanceros Mendez, S

See all (37)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-13 at 01:32:53 | Privacy Policy | Personal Data Protection Policy | Whistleblowing