Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Development of stable current collectors for large area dye-sensitized solar cells
Publication

Publications

Development of stable current collectors for large area dye-sensitized solar cells

Title
Development of stable current collectors for large area dye-sensitized solar cells
Type
Article in International Scientific Journal
Year
2017-06-20
Authors
Ana Isabel Pereira
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications Without AUTHENTICUS Without ORCID
Jorge Martins
(Author)
FEUP
Carlos José Tavares
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Luísa Andrade
(Author)
FEUP
Adélio Mendes
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 423
Pages: 549-556
ISSN: 0169-4332
Publisher: Elsevier
Other information
Authenticus ID: P-00N-2QP
Resumo (PT):
Abstract (EN): The substrate sheet resistance effect in a large area dye-sensitized solar cell (DSC) device is still the main factor responsible for low energy conversion efficiencies. In this work, current collectors made of metal lines were applied by magnetron sputtering on a transparent conducting glass substrate. The introduction of these metal lines enabled a decrease in the sheet resistance from 7.26 Omega.square(-1) to 2.52 Omega.square(-1), by depositing an optimized 1.0 mu m tungsten thick layer on the top of 1.5 mu m thick molybdenum lines. These Mo/W lines withstanded long-term stability when in contact with iodide/triiodide redox couple. Large area dye-sensitized solar cells with 36 cm(2) of active area were assembled and the power conversion efficiency increased from 0.54% to 1.62% when ten metal lines were applied in both electrodes. As a final design, Mo/W lines were only applied onto the counter-electrode and protected with an indium-tin oxide layer; the resulting device showed a power conversion efficiency of 3.43%, compared with the reference efficiency of 2.38%.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 8
License type: Click to view license CC BY-NC-ND
Documents
File name Description Size
Manuscript_revised 1251.97 KB
Related Publications

Of the same journal

Advanced nanomaterials Preface (2017)
Another Publication in an International Scientific Journal
Titus, E; ventura, j.; araujo, j. p.; Gil, JC
Advanced energy materials (Preface) (2017)
Another Publication in an International Scientific Journal
Titus, E; ventura, j.; araujo, j. p.; Gil, JC
XPS analysis of ZnO:Ga films deposited by magnetron sputtering: Substrate bias effect (2018)
Article in International Scientific Journal
F. C. Correia; N. Bundaleski; Orlando M. N. D Teodoro; M. R. Correia; L. Rebouta; Adélio Mendes; C. J. Tavares
Visible-light-induced self-cleaning functional fabrics using graphene oxide/carbon nitride materials (2019)
Article in International Scientific Journal
Marta Pedrosa; Sampaio, M.J.; Tajana Horvat; Olga C. Nunes; Goran Dra¸ić; Alírio E. Rodrigues; José L. Figueiredo; Cláudia G Silva; Adrián M. T. Silva; Joaquim L. Faria
Unraveling the resistive switching effect in ZnO/0.5Ba(Zr0.2Ti0.8)O-3-0.5(Ba0.7Ca0.3)TiO3 heterostructures (2017)
Article in International Scientific Journal
Silva, JPB; Vorokhta, M; Dvorak, F; Sekhar, KC; Matolin, V; Agostinho Moreira, JA; Pereira, M; Gomes, MJM

See all (52)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-12 at 23:57:18 | Privacy Policy | Personal Data Protection Policy | Whistleblowing