Abstract (EN):
Automatic vision systems are widely used in sports competition to analyze individual and collective performance during the matches. However, the complex implementation based on multiple fixed cameras and the human intervention on the process makes this kind of systems expensive and not suitable for the big majority of the teams. In this paper we propose a low-cost, portable and flexible solution based on the use of Unmanned Air Vehicles to capture images from indoor soccer games. Since these vehicles suffer from vibrations and disturbances, the acquired video is very unstable, presenting a set of unusual problems in this type of applications. We propose a complete video-processing framework, including video stabilization, camera calibration, player detection, and team performance analysis. The results showed that camera calibration was able to correct automatically image-to-world homography; the player detection precision and recall was around 75%; and the high-level data interpretation showed a strong similarity with ground-truth derived results.
Language:
English
Type (Professor's evaluation):
Scientific