Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Sequential anomalies: a study in the Railway Industry
Publication

Publications

Sequential anomalies: a study in the Railway Industry

Title
Sequential anomalies: a study in the Railway Industry
Type
Article in International Scientific Journal
Year
2016
Authors
Rita Ribeiro
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Pereira, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
João Gama
(Author)
FEP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Title: Machine LearningImported from Authenticus Search for Journal Publications
Vol. 105 No. 1
Pages: 127-153
ISSN: 0885-6125
Publisher: Springer Nature
Other information
Authenticus ID: P-00K-P1V
Abstract (EN): Concerned with predicting equipment failures, predictive maintenance has a high impact both at a technical and at a financial level. Most modern equipments have logging systems that allow us to collect a diversity of data regarding their operation and health. Using data mining models for anomaly and novelty detection enables us to explore those datasets, building predictive systems that can detect and issue an alert when a failure starts evolving, avoiding the unknown development up to breakdown. In the present case, we use a failure detection system to predict train door breakdowns before they happen using data from their logging system. We use sensor data from pneumatic valves that control the open and close cycles of a door. Still, the failure of a cycle does not necessarily indicates a breakdown. A cycle might fail due to user interaction. The goal of this study is to detect structural failures in the automatic train door system, not when there is a cycle failure, but when there are sequences of cycle failures. We study three methods for such structural failure detection: outlier detection, anomaly detection and novelty detection, using different windowing strategies. We propose a two-stage approach, where the output of a point-anomaly algorithm is post-processed by a low-pass filter to obtain a subsequence-anomaly detection. The main result of the two-level architecture is a strong impact in the false alarm rate.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 27
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Failure Prediction - An Application in the Railway Industry (2014)
Article in International Conference Proceedings Book
Pereira, P; Rita Ribeiro; João Gama

Of the same journal

Special ILP mega-issue: ILP-2003 and ILP-2004 (2006)
Another Publication in an International Scientific Journal
Rui Camacho; Ross King; Ashwin Srinivasan
Metalearning and Algorithm Selection: progress, state of the art and introduction to the 2018 Special Issue (2018)
Another Publication in an International Scientific Journal
Pavel Brazdil; Giraud Carrier, C
Introduction to the special issue on meta-learning (2004)
Another Publication in an International Scientific Journal
Giraud Carrier, C; Vilalta, R; Pavel Brazdil
Guest editors' introduction: special issue on Inductive Logic Programming and on Multi-Relational Learning (2015)
Another Publication in an International Scientific Journal
Gerson Zaverucha; Vitor Santos Costa
Guest Editors introduction: special issue of the ECMLPKDD 2015 journal track (2015)
Another Publication in an International Scientific Journal
Concha Bielza; Joao Gama; Alipio Jorge; Indre Zliobaite

See all (40)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2025-07-07 at 06:14:56 | Acceptable Use Policy | Data Protection Policy | Complaint Portal