Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Estimating Fuel Consumption from GPS Data
Publication

Publications

Estimating Fuel Consumption from GPS Data

Title
Estimating Fuel Consumption from GPS Data
Type
Article in International Conference Proceedings Book
Year
2015
Authors
Vilaca, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Carlos Soares
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Conference proceedings International
Pages: 672-682
7th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA)
Santiago de Compostela, SPAIN, JUN 17-19, 2015
Scientific classification
CORDIS: Physical sciences > Computer science > Cybernetics > Artificial intelligence
FOS: Natural sciences > Computer and information sciences
Other information
Authenticus ID: P-00G-69B
Abstract (EN): The road transportation sector is responsible for 87% of the human CO2 emissions. The estimation and prediction of fuel consumption plays a key role in the development of systems that foster the reduction of those emissions through trip planing. In this paper, we present a predictive regression model of instantaneous fuel consumption for diesel and gasoline light-duty vehicles, based on their instantaneous speed and acceleration and on road inclination. The parameters are extracted from GPS data, thus the models do not require data from dedicated vehicle sensors. We use data collected by 17 drivers during their daily commutes using the SenseMyCity crowdsensor. We perform an empyrical comparison of several regression algorithms for prediction across trips of the same vehicle and for prediction across vehicles. The results show that models trained for a vehicle show similar RMSE when are applied to other vehicles with similar characteristics. Relying on these results, we propose fuel type specific models that provide an accurate prediction for vehicles with similar characteristics to those on which the models were trained.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 11
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same scientific areas

Web mining for the integration of data mining with business intelligence in web-based decision support systems (2014)
Chapter or Part of a Book
Marcos Aurélio Domingues; Alípio M. Jorge; Carlos Soares; Solange Oliveira Rezende
Using Multivariate Adaptive Regression Splines in the Construction of Simulated Soccer Team's Behavior Models (2013)
Article in International Scientific Journal
Pedro Henriques Abreu; Daniel Castro Silva; Joao Mendes Moreira; Luis Paulo Reis; Julio Garganta
Optimal leverage association rules with numerical interval conditions (2012)
Article in International Scientific Journal
Alipio Mario Jorge; Paulo J Azevedo
Improving the accuracy of long-term travel time prediction using heterogeneous ensembles (2015)
Article in International Scientific Journal
Joao Mendes Moreira; Alipio Mario Jorge; Jorge Freire de Sousa; Carlos Soares

See all (56)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-09 at 05:29:07 | Privacy Policy | Personal Data Protection Policy | Whistleblowing