Abstract (EN):
In this paper we propose a new method to perform incremental discretization. The basic idea is to perform the task in two layers. The first layer receives the sequence of input data and keeps some, statistics on the data using many more intervals than required. Based on the statistics stored by the first layer, the second layer creates the final discretization. The proposed architecture processes streaming examples in a single scan, in constant time and space even for infinite sequences of examples. We experimentally demonstrate that incremental discretization is able to maintain the performance of learning algorithms in comparison to a batch discretization. The proposed method is much more appropriate in incremental learning, and in problems where data flows continuously, as in most of the recent data mining applications. Copyright 2006 ACM.
Language:
English
Type (Professor's evaluation):
Scientific