Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > MINAS: multiclass learning algorithm for novelty detection in data streams
Publication

Publications

MINAS: multiclass learning algorithm for novelty detection in data streams

Title
MINAS: multiclass learning algorithm for novelty detection in data streams
Type
Article in International Scientific Journal
Year
2015
Authors
de Faria, ER
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Ponce de Leon Ferreira Carvalho, AC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
João Gama
(Author)
FEP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 28
ISSN: 1384-5810
Publisher: Springer Nature
Other information
Authenticus ID: P-00G-JNA
Abstract (EN): Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is a classification task that assesses if one or a set of examples differ significantly from the previously seen examples. This is an important task for data stream, as new concepts may appear, disappear or evolve over time. Most of the works found in the ND literature presents it as a binary classification task. In several data stream real life problems, ND must be treated as a multiclass task, in which, the known concept is composed by one or more classes and different new classes may appear. This work proposes MINAS, an algorithm for ND in data streams. MINAS deals with ND as a multiclass task. In the initial training phase, MINAS builds a decision model based on a labeled data set. In the online phase, new examples are classified using this model, or marked as unknown. Groups of unknown examples can be used later to create valid novelty patterns (NP), which are added to the current model. The decision model is updated as new data come over the stream in order to reflect changes in the known classes and allow the addition of NP. This work also presents a set of experiments carried out comparing MINAS and the main novelty detection algorithms found in the literature, using artificial and real data sets. The experimental results show the potential of the proposed algorithm. © 2015 The Author(s)
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 41
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Guest editors introduction: special issue of the ECMLPKDD 2015 journal track (2015)
Another Publication in an International Scientific Journal
Bielza, C; João Gama; Jorge, AM; Zliobaite, I
Guest Editorial: Special Issue on Data Mining for Geosciences (2019)
Another Publication in an International Scientific Journal
Jorge, AM; Lopes, RL; Larrazabal, G; Nikhalat Jahromi, H
Very fast decision rules for classification in data streams (2015)
Article in International Scientific Journal
Kosina, P; João Gama
Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality (2015)
Article in International Scientific Journal
Carlos Saez; Pedro Pereira Rodrigues; João Gama; Montserrat Robles; Juan M Garcia Gomez
Novel features for time series analysis: a complex networks approach (2022)
Article in International Scientific Journal
Silva, VF; Maria Eduarda Silva; Pedro Ribeiro; Silva, F

See all (14)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-08 at 01:35:17 | Privacy Policy | Personal Data Protection Policy | Whistleblowing