Abstract (EN):
This paper addresses the problem of optimal, three-dimensional, localization of an acoustic pinger. Making use of acoustic receivers, the time-of-arrivals are computed and fused with their positions to estimate the target position. Motivated by practical applications where autonomous surface vehicles are employed to carry sensing equipment, these receivers are constrained to lie in a plane. The optimal configuration of sensors is derived by maximizing the determinant of the Fisher information matrix. A method to track and estimate the position of the target is proposed and implemented in a formation of four vehicles. Experimental results show very motivating results with successful estimates of the target position.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
8