Saltar para:
Logótipo
Você está em: Início > M4146
Mapa das Instalações
FC6 - Departamento de Ciência de Computadores FC5 - Edifício Central FC4 - Departamento de Biologia FC3 - Departamento de Física e Astronomia e Departamento GAOT FC2 - Departamento de Química e Bioquímica FC1 - Departamento de Matemática

Modelos de Aprendizagem Estatística

Código: M4146     Sigla: M4146     Nível: 400

Áreas Científicas
Classificação Área Científica
OFICIAL Matemática

Ocorrência: 2021/2022 - 2S Ícone do Moodle

Ativa? Sim
Unidade Responsável: Departamento de Matemática
Curso/CE Responsável: Mestrado em Estatística Computacional e Análise de Dados

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
M:ECAD 11 Plano Oficial do ano letivo 2021/2022 1 - 6 42 162

Docência - Responsabilidades

Docente Responsabilidade
Joaquim Fernando Pinto da Costa Regente
João Nuno Domingues Tavares Regente

Docência - Horas

Teorico-Prática: 3,00
Tipo Docente Turmas Horas
Teorico-Prática Totais 1 3,00
Joaquim Fernando Pinto da Costa 1,00
João Nuno Domingues Tavares 0,00

Língua de trabalho

Português - Suitable for English-speaking students

Objetivos

Na maioria das disciplinas científicas, as hipóteses são avaliadas e validadas aplicando-se ferramentas estatísticas a dados experimentais ou observacionais.

Dois paradigmas distintos dominam o cenário estatístico: as abordagens frequencista  e bayesiana, ambas tratadas com detalhe noutras ucs deste ciclo de estudos.

Os objetivos da aprendizagem estatística são compreensão e previsão. Enquadra-se em várias categorias, incluindo aprendizagem supervisionada, não supervisionada, semi-supervisionada e aprendizagem por reforço.  O objetivo desta uc é tratar cada uma destas categorias, as áreas de aplicação de cada uma, metodologias de realização através de arquiteturas de redes neuronais (profundas) e implementação computacional usando tensorflow e keras.

Serão usados vários tipos de arquiteturas de redes neuronais: multicamadas (feedforward); convolutivas, recursivas, generativas e outras. Serão tratados processos de otimização de redes e de regularização, e problemas de aplicação prática em várias áreas científicas e tecnológicas.

Objetivos e competências:

  1. Distinguir com clareza as diferentes categorias de aprendizagem acima referidas
  2. Distinguir as diferentes arquiteturas de redes neuronais referidas
  3. Implementar essas arquiteturas com tensorflow e keras

Perante uma situação concreta escolher a metodologia de aprendizagem apropriada e a sua implementação computacional.

Resultados de aprendizagem e competências

Resultados da aprendizagem e competências:
1. Distinguir com clareza as diferentes categorias de aprendizagem acima referidas
2. Distinguir as diferentes arquiteturas de redes neuronais referidas
3. Implementar essas arquiteturas com tensorflow e keras
Perante uma situação concreta escolher a metodologia de aprendizagem apropriada e a sua implementação computacional.

Modo de trabalho

Presencial

Programa

1. Métodos de aprendizagem e inferência. Aprendizagem supervisionada, não supervisionado, semi-supervisionada e por reforço.
2. Seleção de modelo. Validação cruzada. Aprendizagem robusta
3. Redes neuronais como máquinas universais. Redes multicamadas: arquitetura e erro. Retropropagação.
4. Redes neurais recorrentes. Retropropagação para Aprendizagem Temporal. Redes para modelação de sistemas dinâmicos.
5. Redes neurais convolutivas profundas.
6. Representação da aprendizagem. Autoencoders. Redes Neuronais Generativas Adversárias.
7. Aprendizagem por reforço. Modelo ator-crítico. Aprendizagem de reforço sem modelo e baseado em modelo. Aprendizagem por diferença temporal. Q-Learning

Bibliografia Obrigatória

Ovidiu Calin; Deep learning architectures. ISBN: 978-3-030-36721-3

Métodos de ensino e atividades de aprendizagem

As metodologias de ensino incluem aulas formais interativas, fomentando as componentes expositiva com interpelação e diálogo com os estudantes. Incluem-se, sempre que necessário, palestras envolvendo os estudantes num processo mais ativo, e recorre-se ao estudo de “case studies” / artigos, com recurso a ferramentas como livros, artigos e internet, procurando orientar os estudantes de forma estruturada para a compreensão dos assuntos; aulas práticas laboratoriais, onde os estudantes executam experiências, implementam algoritmos cruciais na área e/ou usam programas de análise de dados que lhes permitem desenvolver competências laboratoriais e informáticas transversais e integradas na área da aprendizagem estatística. As metodologias de ensino acima mencionadas serão ajustadas de modo a permitir que os estudantes integrem os objetivos da unidade curricular.

Tipo de avaliação

Avaliação distribuída sem exame final

Componentes de Avaliação

Designação Peso (%)
Participação presencial 10,00
Apresentação/discussão de um trabalho científico 50,00
Teste 40,00
Total: 100,00

Componentes de Ocupação

Designação Tempo (Horas)
Apresentação/discussão de um trabalho científico 40,00
Estudo autónomo 60,00
Frequência das aulas 42,00
Trabalho escrito 20,00
Total: 162,00

Obtenção de frequência

Para obtenção da frequência os alunos têm que

  1. apresentar um trabalho individual sobre um tema da uc a combinar com o docente responsável. A valorização será de 20 valores.
  2. Realizar um teste escrito sobre os conteúdos programáticos da uc. A valorização será de 20 valores.
Ter participação a pelo menos 50% s das aulas leccionadas em regímen síncrono (presencial ou à distância).

Fórmula de cálculo da classificação final

A classificação final é obtida com a média aritmética das classificações obtidas nas seguintes componentes:  (i). Apresentação/discussão de um trabalho científico, e (ii). teste escrito.
Cada uma destas componentes será valorizada com um máximo de 20 valores, tendo cada uma um peso de 50% no cáculo da classificação final.

O aluno terá que obter um mínimo de 8 valores (num total de 20 valores) em cada uma das duas componentes referidas.

Melhoria de classificação

A melhoria de classificação far-se-á através de um exame escrito.

Observações

O modo de funcionamento da unidade curricular está condicionado às limitações impostas pela FCUP de acordo com a evolução da pandemia COVID19. Não se espera um modo de funcionamento que seja 100% presencial. Poderá ser em sistema de B-Learning se as circunstâncias assim o exigirem.
Recomendar Página Voltar ao Topo
Copyright 1996-2023 © Faculdade de Ciências da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2023-10-03 às 05:52:11 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias