Delamination behaviour of composites <image>

Woodhead Publishing Limited; proof copy not for publication

WH-Delamination-Pre

1 **Related titles:** 2

Multi-scale modelling of composite material systems (ISBN 978-1-85573-936-9)

Predictive modelling provides the opportunity both to understand better how 5 composites behave in different conditions and to develop materials with enhanced 6 performance for particular industrial applications. This important book focuses on 7 the fundamental understanding of composite materials at the microscopic scale, 8 from designing micro-structural features, to the predictive equations of the 9 functional behaviour of the structure for a specific end-application. Chapters 10 discuss stress and temperature-related behavioural phenomena based on 11 knowledge of physics of microstructure and microstructural change over time. 12 13 Impact behaviour of fibre-reinforced composite materials and structures 14 (ISBN 978-978-1-8573-423-4) This study covers impact response, damage tolerance and failure of fibre-15 reinforced composite materials and structures. Materials development, analysis 16 and prediction of structural behaviour and cost-effective design all have a bearing 17 on the impact response of composites and this book brings together for the first 18 time the most comprehensive and up-to-date research work from leading 19 international experts. 20 21 Mechanical testing of advanced fibre composites 22 (ISBN 978-1-85573-312-1) 23 Testing of composite materials can present complex problems but is essential in 24 order to ensure the reliable, safe and cost-effective performance of any 25 engineering structure. Mechanical testing of advanced fibre composites describes a wide range of test methods which can be applied to various types of advanced 26 fibre composites. The book focuses on high modulus, high strength fibre/plastic 27 composites and also covers highly anisotropic materials such as carbon, aramid 28 and glass. 29

Details of these and other Woodhead Publishing materials books, as well as materials books from Maney Publishing, can be obtained by:

- visiting our web site at www.woodheadpublishing.com
- contacting Customer Services (e-mail: sales@woodhead-publishing.com;
 fax: +44 (0) 1223 893694; tel: +44 (0) 1223 891358 ext: 130; address:
 Woodhead Publishing Ltd, Abington Hall, Granta Park, Great Abington,
 Cambridge CB21 6AH, England)
- If you would like to receive information on forthcoming titles, please send your address details to: Francis Dodds (address, tel. and fax as above; e-mail:
- 40
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41
 4
- 42
 43
 43
 43
 43
 44
 45
 46
 47
 48
 49
 49
 49
 49
 49
 40
 40
 41
 41
 42
 43
 43
 44
 44
 44
 44
 45
 46
 47
 48
 49
 49
 49
 40
 41
 42
 43
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 4

Woodhead Publishing Limited; proof copy not for publication

Delamination behaviour of composites

Edited by Srinivasan Sridharan

Published by Woodhead Publishing and Maney Publishing on behalf of The Institute of Materials, Minerals & Mining

CRC Press Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED Cambridge England

Woodhead Publishing Limited; proof copy not for publication

WH-Delamination-Pre

	Woodhead Publishing Limited and Maney Publishing Limited on behalf of The Institute of Materials, Minerals & Mining
1 2 3	Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington, Cambridge CB21 6AH, England www.woodheadpublishing.com
4 5 6	Published in North America by CRC Press LLC, 6000 Broken Sound Parkway, NW, Suite 300, Boca Raton, FL 33487, USA
7 8 9	First published 2008, Woodhead Publishing Limited and CRC Press LLC © 2008, Woodhead Publishing Limited The authors have asserted their moral rights.
10 11 12 13 14 15	This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the author and the publishers cannot assume responsibility for the validity of all materials. Neither the author nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book.
16 17 18 10	Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from Woodhead Publishing Limited.
20 21 22	The consent of Woodhead Publishing Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited for such copying.
23 24 25	Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.
20 27 28	British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library.
29 30	Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress.
31 32 33 34	Woodhead Publishing ISBN 978-1-84569-244-5 (book) Woodhead Publishing ISBN 978-1-84569-482-1 (e-book) CRC Press ISBN 978-1-4200-7967-8 CRC Press order number: WP7967
35 36 37 38 39	The publishers' policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp which is processed using acid-free and elementary chlorine-free practices. Furthermore, the publishers ensure that the text paper and cover board used have met acceptable environmental accreditation standards.
40 41 42 43	Project managed by Macfarlane Book Production Services, Dunstable, Bedfordshire, England (e-mail: macfarl@aol.com) Typeset by Replika Press Pvt Ltd, India Printed by T J International Limited, Padstow, Cornwall, England

4

	Col	ntents	1 2 3 4 5 6 7 8 9
	Contributor contact details	<i>xvii</i> xxiii	1 1 1 1
	S SRIDHARAN, Washington University in St. Louis USA	70411	1
Part I	Delamination as a mode of failure and testing of delamination resistance Fracture mechanics concepts, stress fields, strain energy release rates, delamination initiation and growth criteria	3	1 1 2 2 2 2
1.1 1.2 1.3 1.4 1.5 1.6	I S RAJU and T K O'BRIEN, NASA-Langley Research Center, USA Introduction Fracture mechanics concepts Delaminations Future trends Concluding remarks References	3 4 10 23 24 25	- 2 2 2 2 2 2 3 3
2	Delamination in the context of composite structural design A RICCIO, C.I.R.A. (Centro Italiano Ricerche Aerospaziali – Italian Aerospace Research Centre), Italy	28	333
2.1 2.2 2.3 2.4	Introduction Physical phenomena behind delamination onset Physical phenomena behind delamination growth Introduction to delamination management in composites	28 30 36	3 3 3 4
2.5	design Impact induced delamination resistance in composites preliminary design	39 41	4 4 4

vi	Contents
• •	0011001100

1	2.6	Delamination tolerance in composites preliminary design	46
2	2.7	Cost-effective delamination management	55
3	2.8	References	60
4	З	Beview of standard procedures for delemination	
6	5	resistance testing	65
7			00
8		P DAVIES, IFREMER Centre de Brest, France	<i></i>
9	3.1	Introduction	65
10	3.2	Historical background	66
11	3.3 2.4	Mode I Mode II	6/ 70
12	5.4 2.5	Mode II	70
13	3.5	Mode III Mixed mode I/II	74 76
14	5.0 2.7	Conclusion on fracture machanics tests to measure	70
15	5.7	delemination resistance	70
16	2 8	Enture trends	79 80
17	3.0 2.0	Conclusion	80 81
18	3.9 3.10	Sources of information and advice	01 81
19	3.10	A cknowledgements	81
20	3.12	References	81
21	5.12	References	01
22	4	Testing methods for dynamic interlaminar fracture	
23		toughness of polymeric composites	87
24		CT Sur Durder University USA	
20		C I SUN, Purdue University, USA	
20	4.1	Introduction	87
20	4.2	Dynamic loading and crack propagation	90
20	4.3	Mode I loading with double cantilever beam (DCB) for	
20		low crack velocity	93
31	4.4	High crack velocity with modified double cantileave	0.5
32	4.5	beam (DCB) and end notch flexure (ENF)	95
33	4.5	Mode I by wedge loading with hopkinson bar	104
34	4.6	Acknowledgment	115
35	4./	References	115
36	Б	Experimental observatorization of interlaminar observ	
37	5	strongth	117
38		Stiength	117
39		R GANESAN, Concordia University, Canada	
40	5.1	Introduction	117
41	5.2	Short beam shear test	118
42	5.3	Double-notch shear test	125
43	5.4	Arcan Test	133

Woodhead Publishing Limited; proof copy not for publication

		Contents	vii	
5.5 5.6	Conclusion References		134 135	1 2
5.7	Appendix: Nomenclature		136	3 4
Part II	Delamination: detection and characterizat	ion		5
6	Integrated and discontinuous piezoelectric sensor/actuator for delamination detection		141	7 8 9
	P TAN and L TONG, University of Sydney, Australia			1
6.1	Introduction	1	141	1
6.2 6.3	fiber reinforced composite (PFRC) sensor/actuat Constitutive equations and modelling developme	or or for a	143	1; 1; 1,
	laminated beam with a single delamination and			1
	sensor/actuator (IPSA)		146	1
6.4	Parametric study		149	1
6.5	Experimental verification		157	1
6.6	Conclusions		165	2
6./	Acknowledgment		165	2
0.8 6.9	Appendix		163 167	2
7	Lamb wave-based quantitative identification	of		2
/	delamination in composite laminates	01	169	2
	Z Su, The Hong Kong Polytechnic University, Hong Kon L YE, The University of Sydney, Australia	ng and		2
7.1	Introduction		169	2
7.2	Lamb waves in composite laminates		170	3
7.3	Lamb wave scattering by delamination		177	3
7.4	Lamb wave-based damage identification for com	posite	100	3
75	Structures		180	3
7.5 7.6	Digital signal processing (DSP)		101 182	3
7.0	Signal pre-processing and de-noising		186	3
7.8	Digital damage fingerprints (DDF)		187	3
7.9	Data fusion		193	3
7.10	Sensor network for delamination identification		198	3
7.11	Case studies: evaluation of delamination in comp	posite		4 1
	laminates		202	4
7.12	Conclusion		211	4

	viii	Contents	
1 2	7.13 7.14	Acknowledgement References	211 212
4	8	Acoustic emission in delamination investigation	217
5 6 7		J BOHSE, BAM-Federal Institute for Materials Research and Testing, Germany and A J BRUNNER, Empa-Swiss Federal Laboratories for Materials Testing and Research, Switzerland	
8	8.1	Introduction	217
9	8.2	Acoustic emission (AE) analysis	218
10	8.3	Acoustic emission analysis applied to investigation of	
11		delaminations in fiber-reinforced, polymer-matrix (FRP)	222
12	8.4	Acoustic emission monitoring of delaminations in	
13		fiber-reinforcd, polymer matrix composite specimens	223
14	8.5	Acoustic emission investigation of delaminations in	
15		structural elements and structures	253
16	8.6	Advantages and limitations for acoustic emission	
17		delamination investigations	267
18	8.7	Related nondestructive acoustic methods for delamination	
19		investigations	272
20	8.8	Summary and outlook	272
21	8.9	Acknowledgments	273
22	8.10	References	273
23			
24 25	Part I	II Analysis of delamination behaviour from tests	
20	9	Experimental study of delamination in cross-ply	
28	-	laminates	281
20			
20		A J BRUNNER, Empa-SWISS Federal Laboratories for Materials	
31	0.1	Testing and Research, Switzenland	201
32	9.1	Introduction	281
33	9.2	Summary of current state	282
34	9.3	Experimental methods for studying delaminations	285
35	9.4	Fracture mechanics study of delamination in cross-ply	200
36	0.5	laminates	280
37	9.5	Structural elements or parts with	300
38	9.0	structural elements or parts with	204
39	0.7	Summery and outlook	205
40	9.1	Aaknowladamanta	303
41	9.8	Acknowledgillents Deferences	303 205
42	9.9	NCICICICICS	505
43			
-			

8

		Contents	ix	
10	Interlaminar mode II fracture characterization	n	310	1
	M F S F DE MOURA, Faculdade de Engenharia da Univer do Porto, Portugal	sidade	5	2 3
10.1 10.2 10.3 10.4 10.5 10.6	Introduction Static mode II fracture characterization Dynamic mode II fracture characterization Conclusions Acknowledgements References	ilul,	310 311 321 324 324 325	4 5 6 7 8 9 10
11	Interaction of matrix cracking and delaminat	ion	327	11 12
	M F S F DE MOURA, Faculdade de Engenharia da Univer Porto, Portugal	sidade do		13 14
11.1	Introduction		327	15
11.2	Mixed-mode cohesive damage model		332	16
11.3	Continuum damage mechanics		338	17
11.4	Conclusions		341	18
11.5	References		342	19
12	Experimental studies of compression failure sandwich specimens with face/core debond	of	344	20 21 22
	F AVILÉS, Centro de Investigación Científica de Yucatán, México and L A CARLSSON, Florida Atlantic University, U	A C, JSA		23 24
12.1	Introduction		344	25
12.2	Compression failure mechanism of debonded str	uctures	344	26
12.3	Compression failure of debonded sandwich colum	mns	346	27
12.4	Compression failure of debonded sandwich pane	els	353	20
12.5	Acknowledgments		362	30
12.6	References		362	31
	0			32
Part I	/ Modelling delamination			33 34
13	Predicting progressive delamination via inter elements	rface	367	35 36
	S HALLETT, University of Bristol, UK			37
13.1	Introduction		367	38
13.2	Background to the development of interface eler	nents	367	39
13.3	Numerical formulation of interface elements		368	40 74
13.4	Applications		373	41
13.5	Enhanced formulations		380	43

	х	Contents	
1 2 3	13.6 13.7 13.8	Conclusions Acknowledgements References	382 382 382
4 5 6	14	Competing cohesive layer models for prediction of delamination growth	387
/ 8		S SRIDHARAN, Washington University in St. Louis, USA and Y LI, Intel Corporation, USA	
10	14.1	Introduction	387
11	14.2	UMAT (user material) model	388
12	14.3	UEL (user supplied element) model	391
13	14.4	Double cantilever problem	394
14	14.5	UMAT model: details of the study and discussion of results	394
15	14.6	UEL model: details of the study and discussion of results	403
16	14.7	Delamination of composite laminates under impact	407
17	14.8	Conclusion	427
18	14.9	References	427
19	15	Modeling of delamination fracture in composites:	
20	10	a review	429
21 22 23		R C Yu, Universidad de Castilla-La Mancha, Spain and A PANDOLFI, Politecnico di Milano Italy	_
24	15.1	Introduction	429
25	15.2	The cohesive approach	431
26	15.3	Delamination failure in fiber reinforced composites	432
27	15.4	Delamination failure in layered structures	440
28	15.5	Summary and conclusions	450
29	15.6	Acknowledgement	451
30	15.7	References	452
31 32	16	Delamination in adhesively bonded joints	458
33		B R K BLACKMAN, Imperial College London, UK	
34	16 1	Introduction	150
35	16.1	Adherive bonding of composites	450
36	16.2	Fracture of adhesively bonded composite joints	430
37	16.5	Future trends	400
38	16.5	Sources of further information and advice	480
39	16.6	References	481
40			
41			
42 72			
40			

10

WH-Delamination-Pre

	Contents	s xi	
17	Delamination propagation under cyclic loading	485	1
	P P CAMANHO, Universidade do Porto, Portugal and A TURON and J COSTA, University of Girona, Spain	0	2
17.1	Introduction and motivation	485	4
17.2	Experimental data	486	6
17.3	Damage mechanics models	488	7
17.4	Simulation of delamination growth under fatigue loading	100	8
17.5	using cohesive elements: cohesive zone model approach	490	9
17.5	Numerical representation of the cohesive zone model	491	10
17.6	Constitutive model for high-cycle fatigue	493	11
17.0	Examples	498	12
17.0	Mode II loading	498	13
17.9	Mixed mode L and II loading	504	14
17.10	Fatigue delamination on a skin-stiffener structure	505	15
17.11	Conclusions	510	16
17.13	Acknowledgments	510	17
17.14	References	511	18
			19
18	Single and multiple delamination in the presence of		20
	nonlinear crack face mechanisms	514	21
	R Massabò, University of Genova, Italy		23
18.1	Introduction	514	24
18.2	The cohesive- and bridged-crack models	515	25
18.3	Characteristic length scales in delamination fracture	528	26
18.4	Derivation of bridging traction laws	535	27
18.5	Single and multiple delamination fracture	539	28
18.6	Final remarks	553	29
18.7	Acknowledgement	555	30
18.8	References	555	31
			32 33
Part V	Analysis of structural performance in presence		34
	of delamination and prevention/mitigation of		35
	delamination		36
10			37
19	Determination of delamination damage in		38
	composites under impact loads	501	39
	A F JOHNSON and N TOSO-PENTECÔTE, German Aerospace Center		40
	(DLR), Germany		41
19.1	Introduction	561	42
19.2	Composites failure modelling	563	43

	xii	Contents	
1 2	19.3 19.4	Delamination damage in low velocity impact Delamination damage in high velocity impact	570 576
3 4 5	19.3 19.6	References	583 584
6 7	20	Delamination buckling of composite cylindrical shells	586
8		A TAFRESHI, The University of Manchester, UK	
9 10	20.1	Introduction	586
11	20.2	Finite element analysis	588
12	20.3	Validation study	597
13 14	20.4	Results and discussion: analysis of delaminated composite cylindrical shells under different types of	
15		loadings	597
16	20.5	Conclusion	614
17	20.6	References	616
18 19	21	Delamination failure under compression of composite laminates and sandwich structures	618
20 21		S SRIDHARAN, Washington University in St. Louis, USA, Y LI, Intel	
22		Corporation, USA and El-Sayed, Caterpillar Inc., USA	
23	21.1	Introduction	618
24 25	21.2	Case study (1): composite laminate under longitudinal	610
26	21.3	Compression Case study (2): dynamic delamination of an axially	619
27	21.3	compressed sandwich column	628
28	21.4	Case study (3): two-dimensional delamination of	028
29	21.1	laminated plates	635
30	21.5	Results and discussion	644
31	21.6	Conclusion	647
32	21.7	References	648
33 34	22	Self-healing composites	650
35		M R Kessler, Iowa State University, USA	
36	22.1	Introduction	650
37	22.1 22.2	Self-healing concept	652
30 20	22.3	Healing-agent development	657
39 40	22.4	Application to healing of delamination damage in FRPs	661
41	22.5	Conclusions	670
42	22.6	References	671
43			

WH-Delamination-Pre

	Сс	ontents	xiii	
23	Z-pin bridging in composite delamination		674	1
	H Y LIU, The University of Sydney, Australia and W YAN, Monash University, Australia		5	2 3
23.1	Introduction		674	4
23.2	Z-pin bridging law		675	6
23.3	Effect of Z-pin bridging on composite delamination	n	677	7
23.4	Z-pin bridging under high loading rate		693	8
23.5 23.6	Future trends		099 703	9
23.0	References		703	10
23.1	References		704	11
24	Delamination suppression at ply drops by ply			12
	chamfering		706	1/
	M R WISNOM and B KHAN, University of Bristol, UK			15
24.1	Introduction		706	16
24.2	Behaviour of tapered composites with		100	17
	ply drops		707	18
24.3	Methods of chamfering plies		711	19
24.4	Results of ply chamfering		711	20
24.5	Summary and conclusions		719	21
24.6	References		720	22
25	Influence of resin on delamination		721	24
	S MALL, Air Force Institute of Technology, USA			25
25.1	Introduction		721	20
25.2	Resin toughness versus composite toughness		722	28
25.3	Resin toughness effects on different modes		725	29
25.4	Resin effects on cyclic delamination behaviour		729	30
25.5	Temperature considerations		733	31
25.6	Effects of interleafing and other methods		735	32
25.7	Summary		737	33
25.8	References		/39	34
	Index		741	35
			/ 11	30
				38
	U			39
	0			40
				41
				42
				43

WH-Delamination-Pre

____|

Contributor contact details

		6
		7
		8
		9
(* = main contact)		10
latro du otion	Chapter 2	10
Introduction	Chapter 3	12
S. Sridharan*	P. Davies	14
Department of Mechanical,	Materials and Structures Group	15
Aerospace and Structural	(DOP/DCB/ERT/MS)	16
Engineering	IFREMER Centre de Brest	17
Washington University in St. Louis	BP70	18
St. Louis, MO 63130	29280 Plouzané	19
USA	France	20
F-mail: ssrid@seas wustl.edu	E-mail: neter davies@ifremer fr	21
E man. ssind e seas. wustiledu	E man. peter.davies@intemer.m	22
Observed 1	Character 4	23
Chapter I	Chapter 4	24
I. S. Raju* and T. K. O'Brien	C. Sun	26
NASA-Langley Research Center	School of Aeronautics and	27
Hampton, VA 23861	Astronautics	28
USA	Purdue University	29
	West Lafayette, IN 47907	30
E-mail: ivatury.s.raju@nasa.gov	USA	31
	E mail: sun@nurdue edu	32
Chapter 2	E-man. sun@purdue.edu	33
A. Riccio		34
C I R A (Centro Italiano Ricerche		30
Aerospaziali – Italian Aerospace		37
Research Centre)		38
Via Maiorise, S/N		39
81043		40
Capua (Caserta)		41
Italy		42
		43

E-mail: a.riccio@cira.it

Chapter 5	L. Ye*
R. Ganesan	Centre for Advanced Materials
Concordia Centre for Composites	School of Acrospace
Department of Mechanical and	Machanical and Machatronia
Industrial Engineering	Engineering (AMME)
Concordia University	The University of Sydney
Room EV 4 - 211, 1515 St	NSW 2006
Catherine West	Australia
Montreal	Tubtullu
Quebec H3G 2W1	E-mail: ve@aeromech.usvd.edu.au
Canada	
	Character
E-mail: ganesan@encs.concordia.ca	Chapter 8
	J. Bohse*
Chapter 6	BAM – Federal Institute for
	Materials Research and Testing
P. lan? and L. long*	Division V.6 Mechanical Behaviou
School of Aerospace	of Polymers
Engineering	Unter den Eichen 87
University of Sydney	D-12205 Berlin
NSW 2006	Germany
Australia	
	E-mail: juergen.bohse@bam.de
E-mail: ltong@aeromech.usyd.edu.au	A I Brunner
pingtan@aeromech.usyd.edu.au	Laboratory for Mechanical System
	Engineering
Chapter 7	Empa – Swiss Federal Laboratorie
	for Materials Testing and
Z. Su	Research
The Department of Mechanical	Ueberlandstrasse 129
Engineering	CH-8600 Duebendorf
The Hong Kong Polytechnic	Switzerland
University	
Kowloon	E-mail: andreas.brunner@empa.ch
Hong Kong	
Hong Kong	
E-mail: mmsu@polyu.edu.hk	
szq@aeromech.usyd.edu.au;	
1	

• Ping Tan is currently working as a research scientist at the Australian Defence Science and Technology Organisation

	Contributor contact details xvii	
Chapter 9 A. J. Brunner Laboratory for Mechanical Systems Engineering Empa – Swiss Federal Laboratories for Materials Testing and Research Ueberlandstrasse 129 CH-8600 Duebendorf Switzerland	L. Carlsson Department of Mechanical Engineering Florida Atlantic University Boca Raton, FL 33431 USA E-mail: faviles@cicy.mx carlsson@fau.edu	1 2 3 4 5 6 7 8 9 10
E-mail: andreas.brunner@empa.ch	Chapter 13 S. Hallett	11 12 13
Chapters 10 and 11 Marcelo Francisco de Sousa Ferreira de Moura Departamento de Engenharia Mecânica e Gestão Industrial	Advance Composites Centre for Innovation and Science University of Bristol Queens Building University Walk Bristol BS8 1TR UK	15 16 17 18 19 20
Faculdade de Engenharia da Universidade do Porto Rua Dr. Roberto Frias s/n, 4200- 465 Porto Portugal	E-mail: Stephen.Hallett@bristol.ac.uk Chapters 14 and 21	21 22 23 24 25
E-mail: mfmoura@fe.up.pt	S. Sridharan* Department of Mechanical, Aerospace and Structural Engineering	26 27 28 29
F. Avilés* Centro de Investigación Científica de Yucatán, A.C.	Washington University in St. Louis St. Louis, MO 63130 USA	30 31 32 33
Unidad de Materiales Calle 43 # 103 Col. Chuburná de Hidalgo C.P. 97200. Mérida Yucatán	E-mail : ssrid@seas.wustl.edu Y. Li Intel Corporation Chandler, AZ 85224 USA	34 35 36 37 38 39
MEXICO	E-mail: yupeng.lizzy.li@intel.com	40 41 42 43

	xviii Contributor contact details	
1	Chapter 15	A
2 3 4 5 6	R. Yu* E.T.S Ingenieros de Caminos, Canales y Puertos Universidad de Castilla-La Mancha	F L
7 8	Spain	S
9 10	E-mail: rena@uclm.es	(
11 12 13	A. Pandolfi Dipartimento di Ingegneria Strutturale	F
14 15 16 17 18	Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy	U N 1 I
19 20 21	E-mail: pandolfi@stru.polimi.it	E
22	Chapter 16	0
23 24 25	B. Blackman Department of Mechanical	A
26 27 28	Engineering Imperial College London London SW7 2AZ	C I
29	UK	7
31	E-mail: b.blackman@imperial.ac.uk	
33	Chapter 17	E
 34 35 36 37 38 39 40 41 42 	P. Camanho* DEMEGI Faculdade de Engenharia Universidade do Porto Rua Dr. Roberto Frias 4200-465 Porto Portugal	
	E mail: naomanha@fa un nt	

A. Turon and J. Costa AMADE Polytechnic School Jniversity of Girona Campus Montilivii s/n 7071 Girona pain
Chapter 18
Roberta Massabò Department of Civil, Environmental and Architectural Engineering University of Genova Via Montallegro, 1 6145, Genova taly R-mail: roberta.massabo@unige.it Chapter 19
Alastair F. Johnson and Nathalie Toso-Pentecôte German Aerospace Center (DLR) Institute of Structures and Design Pfaffenwaldring 38-40 0569 Stuttgart Germany
-mail: alastair.johnson@dlr.de

WH-Delamination-Pre

	Contributor contact details xix	
Chapter 20 A. Tafreshi School of Mechanical Aerospace and Civil Engineering The University of Manchester P.O. Box 88 Sackville Street Manchester M60 1QD UK	W. Yan Department of Mechanical Engineering Monash University Melbourne Victoria 3800 Australia E-mail: wenyi.yan@eng.monash.edu.au	1 2 3 4 5 6 7 8 9 10
E-mail: azam.tafreshi@manchester.ac.uk	Chapter 24	11 12 13
Chapter 22 M. Kessler Iowa State University Materials Science and Engineering 2220 Hoover Hall Ames, IA 50011-2300 USA E-mail: mkessler@iastate.edu	M. R. Wisnom University of Bristol Advanced Composites Centre for Innovation and Science Queens Building University Walk Bristol BS8 1TR UK E-mail: M. Wisnom@bristol.ac.uk	14 15 16 17 18 19 20 21 22 23 24
Chapter 23	Chapter 25	24
H. Liu* Centre for Advanced Materials Technology School of Aerospace Mechanical and Mechatronic Engineering The University of Sydney Sydney NSW 2006 Australia E-mail: hong-yuan.liu@usyd.edu.au	S. Mall Air Force Institute of Technology AFIT/ENY Bldg. 640 2950 Hobson Way Wright-Patterson AFB, OH 45433 USA	26 27 28 29 30 31 32 33 34 35 36 37 28
		38 39 40 41 42 43

WH-Delamination-Pre

E-mail: shankar.mall@afit.edu	Introduction
S SRIDHARAN, Washingto	n University in St. Louis, USA
3	
R	
5	
0	
Š	

xxii Introduction

1 Laminated composites are becoming the preferred material system in a variety 2 of industrial applications, such as aeronautical and aerospace structures, ship 3 hulls in naval engineering, automotive structural parts, micro-electro-4 mechanical systems as also civil structures for strengthening concrete members. 5 The increased strength and stiffness for a given weight, increased toughness, 6 increased mechanical damping, increased chemical and corrosion resistance 7 in comparison to conventional metallic materials and potential for structural 8 tailoring are some of the factors that have contributed to the advancement of 9 laminated composites. Their increased use has underlined the need for 10 understanding their modes of failure and evolving technologies for the continual 11 enhancement of their performance.

12 The principal mode of failure of layered composites is the separation 13 along the interfaces of the layers, viz. delamination. This type of failure is 14 induced by interlaminar tension and shear that develop due to a variety of 15 factors such as: Free edge effects, structural discontinuities, localized 16 disturbances during manufacture and in working condition, such as impact 17 of falling objects, drilling during manufacture, moisture and temperature 18 variations and internal failure mechanisms such as matrix cracking. Hidden 19 from superficial visual inspection, delamination lies often buried between 20 the layers, and can begin to grow in response to an appropriate mode of 21 loading, drastically reducing the stiffness of the structure and thus the life of 22 the structure. The delamination growth often occurs in conjunction with 23 other modes of failure, particularly matrix cracking.

A study of composite delamination, as does any technological discipline, has two complementary aspects: An in depth understanding of the phenomenon by analysis and experimentation and the development of strategies for effectively dealing with the problem. These in turn lead to a number of specific topics that we need to consider in the present context. These comprise of:

An understanding of the basic principles that govern the initiation of delamination, its growth and its potential interaction with other modes of failure of composites. This is the theme of the first chapter, but several authors return to this theme in their own respective contributions.

34 2. The determination of material parameters that govern delamination 35 initiation and growth by appropriate testing. These must necessarily be 36 interfacial strength parameters which govern interlaminar fracture initiation 37 and interlaminar fracture toughness parameters, viz. critical strain energy 38 release rates that must govern interlaminar crack growth. The book contains 39 several valuable contributions from leading international authorities in 40 the field of testing of composites. 41

3. Development of analytical tools : What are the methodologies one may employ to assess the possibility of delamination onset and growth under

Woodhead Publishing Limited; proof copy not for publication

42

43

WH-Delamination-Pre

Introduction xxiii

typical loading scenarios? This may be approached from the points of 1 2 view of fracture mechanics, damage mechanics, cohesive modeling approach and approaches which draw from and combine these. In particular, 3 4 the cohesive modeling approach has proven to be a powerful and versatile 5 tool in that when embedded in a nonlinear finite element analysis, it can trace the two-dimensional delamination growth without user interference, 6 7 is robust from the point of view of numerical convergence, and can 8 potentially account for a variety of interfacial failure mechanisms. This 9 subject is discussed thoroughly in several authoritative contributions. 4. Detection of delamination: Ability to diagnose the presence of delamination 10 11 and to be able to capture in graphical terms the extent of delamination damage is a desideratum towards which the composite industry is 12 13 continuing to make progress. Several nondestructive evaluation tools are available and have been used with varying degrees of success. Acoustic 14 emission, Lamb-wave and Piezo-electric technologies are discussed in 15 the context of delamination detection in the present work. 16 17 5. Prevention of delamination: Several techniques of either inhibiting delamination or altogether suppressing it are available. The book contains 18 a section treating the following techniques of delamination prevention/ 19 20 inhibition: 'Self-healing' composites which internally exude adhesive material as soon as crack advances thus effectively arresting the crack; 21 22 Z-pin bridging in which fibers are introduced across the interlaminar surfaces, liable to delaminate, artfully tapering off discontinuities which 23 are sources of potential delamination and the use of toughened epoxies. 24 25 Delamination driven structural failure: Certain loading scenarios can 6. 26 cause delamination growth if there is some preexisting delamination in the structural component which in turn can lead to structural failure. 27 Typically these are: Impact, cyclic loading (delamination due to fatigue), 28 29 compressive loading causing localized buckling in the vicinity of delamination and dynamic loading in the presence of in-plane compression. 31 Impact loading and any form of dynamic loading in the presence of significant compressive stress in sandwich structures are known to trigger 32 delamination failure which is abrupt and total. These aspects have been 33 discussed in several contributions. 34 35 The book has been divided into several sections to address the issues mentioned in the foregoing. It has been a pleasure to work with a number of 37 authors of international standing and reputation who had spent a great deal of effort in developing their respective chapters. The references cited at the 39 end of each chapter should supplement and corroborate the concepts developed 40 in the chapter. We hope that researchers and engineers who are concerned to 41 apply state of the art technologies to composite structural analysis, design 42 and evaluation of risk of failure will find this book useful and a valuable 43

source of insight.

Interaction of matrix cracking and delamination

2

3

4 5 6

7

14 15

16

17

18

19

20

21

22

23 24

25

M F S F de MOURA, Faculdade de Engenharia da Universidade do Porto, Portugal

11.1 Introduction

Laminated composite materials have high strength-to-weight and stiffnessto-weight ratios. They can be considered as laminar systems with weak interfaces. Consequently, they are very susceptible to interlaminar damage designated by delamination. In the presence of delaminations the material stiffness and, consequently, of the associated structure, can be drastically reduced which can lead to its catastrophic failure. Moreover, delamination is an internal damage and is not easily detected, which increases the associated risks.

11.1.1 Damage mechanism

26 In the majority of real applications delamination does not occur alone. It is 27 known that matrix cracking inside layers and delamination are usually 28 associated and constitute a typical damage mechanism of composites (Takeda 29 et al., 1982; Joshi and Sun, 1985), especially when structures are submitted to bending loads. In fact, although the phenomenon can occur under tensile 31 loading it acquires a remarkable importance under bending loads, e.g. low 32 velocity impact (Choi et al., 1991a). It is commonly accepted that there is a 33 strong interaction between matrix cracking inside layers and delamination 34 between layers. This coupling phenomenon is initiated by matrix cracking, 35 i.e., shear and/or bending cracks in the early stages of the loading process. These cracks can originate delamination and significantly affect its propagation. 37 Delamination occurs between layers with differing fibre orientations. In fact, 38 when a bending or shear crack in a layer reaches an interface between two 39 differently oriented layers it is unable to easily penetrate the other layer, thus 40 propagating as a delamination. On the other hand, two adjacent laminae 41 having different fibre angles induce extensional and bending stiffness mismatch 42 which, combined with the low strength of the matrix, make composite materials 43 very sensitive to delamination at those interfaces. In general, the delamination

327

328 Delamination behaviour of composites

resistance of a given interface decreases with the increase of its stiffness
 mismatching degree (Liu and Malvern, 1987). During delamination propagation
 extensive micro-matrix cracks are generated in the adjacent layers.

4 It is worth noting that this complex interaction damage mechanism can 5 occur in different forms depending on the bending stiffness of the structure. 6 Flexible components respond primarily in a flexural mode, inducing significant 7 tensile stresses at farther layers from the loaded surface. Therefore, the cracks 8 located in these outermost layers are vertical and caused by bending effects 9 (Choi and Chang, 1992) and their initiation and growth occur in an almost 10 mode I fracture process. These cracks will generate a delamination along the 11 upper adjacent interface, which will interact with other matrix cracks of the 12 neighbour upper ply, leading to delamination on the second interface and so 13 on (see Fig. 11.1). Delamination patterns in flexible laminates present a 14 frustum-conical shape, where delaminations' size increases towards the lower 15 face of the laminate (Levin, 1991). A different failure mechanism occurs for 16 stiffer laminates. In this case, only small deflections take place and damage 17 initiates near to the loaded surface as a result of contact forces. Shear cracks 18 develop near to the impact indentation and propagate through the upper ply 19 up to the neighbour interface degenerating in a delamination. This delamination 20 extends from the loaded region until it also deflects into a lower ply by shear 21 and inclined cracks (see Fig. 11.2). Further delamination growth in stiff 22 laminates occurs in a barrel shape region by growth of delaminations around 23 the midplane (Olsson et al., 2000).

Woodhead Publishing Limited; proof copy not for publication

WH-Delamination-11

1991b). Delamination initiation is controlled by mode I although its growth is typically a mixed shear mode (II and III) fracture process (Choi and Chang, 1992), which is explained by the bending stiffness mismatching between adjacent differently oriented layers.

11.1.2 Classical prediction methodologies

25 Two main approaches have been used in order to simulate the damage 26 mechanism described above. One is based on strength of materials concepts 27 where materials are assumed to be free of defects. However, in many situations 28 the problem of stress concentrations nearby to a notch or a flaw leads to 29 mesh dependency in numerical approaches. To overcome this problem the 30 stresses obtained analytically or numerically are used in a point stress or 31 average stress criteria (Whitney and Nuismer, 1974) in order to evaluate the 32 occurrence of failure. In the point stress criterion the stresses are evaluated 33 at a characteristic distance whereas in the average stress criterion they are 34 averaged over a distance. An example is given by Choi et al. (1991b) where 35 quadratic average stress criteria were used to predict matrix cracking when 36

$$\left(\frac{n \overline{\sigma}_{22}}{n Y}\right)^2 + \left(\frac{n \overline{\sigma}_{23}}{n S_i}\right)^2 = 1$$
11.1
38
39

and delamination when

$$D_a \left[\left(\frac{n \,\overline{\sigma}_{23}}{n \,S_i} \right)^2 + \left(\frac{n+1 \,\overline{\sigma}_{13}}{n+1 \,S_i} \right)^2 + \left(\frac{n \,\overline{\sigma}_{22}}{n \,Y} \right)^2 \right] = 1 \qquad 11.2 \qquad 43$$

Woodhead Publishing Limited; proof copy not for publication

18

19

20

21

22 23

24

330 Delamination behaviour of composites

The subscripts 1, 2 and 3 are the orthotropic local coordinates of the *n*th or (n + 1)th layers, which correspond, respectively, to the upper and lower plies of the *n*th interface. *Y* and *S_i* are the *in situ* ply transverse and shear interlaminar strengths, respectively, and *D_a* is an empirical constant which was determined from experiments using a fitting procedure. The stress components are averaged within the ply thickness

$${}^{n}\overline{\sigma}_{ij} = \frac{1}{h_n} \int_{n-1}^{t_n} \sigma_{ij} dz$$
 11.3

where t_n and t_{n-1} correspond to the position of the upper and lower interfaces of the *n*th ply, *h* is the ply thickness and *z* the axis normal to the plate. These criteria were applied in two steps:

• the matrix cracking criterion is initially applied in each layer;

• if matrix cracking is predicted in a given layer, the delamination criterion is applied subsequently considering two different circumstances; this criterion is applied to the lower adjacent interface if a shear crack was predicted and to the upper one if a bending crack was found.

Unlike what happens in strength of materials based approaches, the fracture mechanics approach assumes the presence of an inherent defect in the material. The majority of the proposed works are based on the concepts of strain energy release rate. It is usually assumed that damage propagation occurs when the strain energy at the crack front is equal to the critical strain energy release rate, which is a material property. The strain energy release rates are commonly obtained by using the Virtual Crack Closure Technique (VCCT) (Krueger, 2002). Considering a two dimensional problem (see Fig. 11.3), the strain energies ($G_{\rm I}$ and $G_{\rm II}$) can be calculated by the product of the relative displacements at the 'opened point' (nodes l_1 and l_2) and the loads at the 'closed point' (node *i*)

$$G_{\rm I} = \frac{1}{2B\Delta a} Y_i \Delta v_i$$
$$G_{\rm II} = \frac{1}{2B\Delta a} X_i \Delta u_l$$
11.4

being $B\Delta a$ the area of the new surface created by an increment of crack propagation (see Fig. 11.3). It should be assured that self similar propagation occurs and an adequate refined mesh should be used. Liu *et al.* (1993) used the VCCT to obtain the strains energy release rates and a linear mixed-mode criterion

$$\frac{G_{\rm I}}{G_{\rm Ic}} + \frac{G_{\rm II}}{G_{\rm IIc}} = 1$$
11.5

Woodhead Publishing Limited; proof copy not for publication

WH-Delamination-11

to simulate the propagation of a small initial delamination crack introduced after the occurrence of the initial matrix cracking failure. G_{Ic} and G_{IIc} represent the interlaminar critical strain energy release rates in modes I and II, respectively. A similar approach was followed by Zou *et al.* (2002) where a mixed-mode delamination growth is considered when 24

$$\left(\frac{G_{\rm I}}{G_{\rm Ic}}\right)^{\alpha} + \left(\frac{G_{\rm II}}{G_{\rm IIc}}\right)^{\beta} + \left(\frac{G_{\rm III}}{G_{\rm IIIc}}\right)^{\gamma} = 1$$
11.6
25
27
25
26

and α , β and γ are mixed-mode fracture parameters determined from material 28 tests. 29

The stress and fracture mechanics based criteria present some disadvantages. The stress based methods present mesh dependency during numerical analysis 31 due to stress singularities. On the other hand, the point/average stress criteria 32 require the definition of a critical dimension which depends on the material 33 and stacking sequence (Tan, 1989), and do not have a physically powerful 34 35 theoretical foundation. Fracture mechanics approach relies on the definition of an initial flaw or crack length. However, in many structural applications the locus of damage initiation is not obvious. On the other hand, the stress-37 based methods behave well at predicting delamination onset, and fracture 38 mechanics has already demonstrated its accuracy in the delamination 39 propagation modelling. In order to overcome the referred drawbacks and 40 exploit the usefulness of the described advantages, cohesive damage models 41 and continuum damage mechanics emerge as suitable options. These 42 methodologies combine aspects of stress based analysis to model damage 43

332 Delamination behaviour of composites

initiation and fracture mechanics to deal with damage propagation. Thus, it is not necessary to take into consideration an initial defect and mesh dependency problems are minimized.

11.2 Mixed-mode cohesive damage model

7 Cohesive damage models are frequently used to simulate damage onset and 8 growth. They are usually based on a softening relationship between stresses 9 and relative displacements between crack faces, thus simulating a gradual 10 degradation of material properties. They do not depend on a predefined 11 initial flaw unlike conventional fracture mechanics approaches. Typically, 12 stress based and energetic fracture mechanics criteria are used to simulate 13 damage initiation and growth, respectively. Usually cohesive damage models 14 are based on spring (Cui and Wisnom, 1993 and Lammerant and Verpoest, 15 1996) or interface finite elements (Mi et al., 1998, Petrossian and Wisnom, 1998; de Moura et al., 2000) connecting plane or three-dimensional solid 16 17 elements. Those elements are placed at the planes where damage is prone to 18 occur which, in several structural applications, can be difficult to identify a 19 priori. However, an important characteristic of delamination is that its 20 propagation is restricted to a well defined plane corresponding to the interface 21 between two differently oriented layers, thus leading to a typical application 22 of cohesive methods. Taking this into consideration, a cohesive mixed-mode 23 damage model based on interface finite elements is presented.

The formulation is based on the constitutive relationship between stresses on the crack plane and the corresponding relative displacements

$$\sigma = \mathbf{E}\delta_{\mathbf{r}}$$

11.7

where δ_r is the vector of relative displacements between homologous points, and **E** a diagonal matrix containing the penalty parameter *e* introduced by the user. Its values must be quite high in order to hold together and prevent interpenetration of the element faces. Following a considerable number of numerical simulations (Gonçalves *et al.*, 2000), it was found that $e = 10^7$ N/mm³ produced converged results and avoided numerical problems during the non-linear procedure.

35 The interface finite element includes a damage model to simulate damage 36 onset and growth. Equation 11.7 is only valid before damage initiation. The 37 considered damage model combines aspects of strength-based analysis and 38 fracture mechanics. It is based on a softening process between stresses and 39 interfacial relative displacements and includes a mixed-mode formulation. 40 After peak stress the material softens progressively or, in other words, undergoes 41 damage (see Fig. 11.4). To avoid the singularity at the crack tip and its 42 effects, a gradual rather than a sudden degradation, which would result in 43 mesh-dependency, is considered. It is assumed that failure occurs gradually

Woodhead Publishing Limited; proof copy not for publication

1

2

3

4 5

6

26

as energy is dissipated in a cohesive zone behind the crack tip. This is 16 equivalent to the consideration of a 'Fracture Process Zone', defined as the 17 region in which the material undergoes softening deterioration by different 18 ways, e.g., micro-cracking, fibre bridging and inelastic processes. Numerically, 19 this is implemented by a damage parameter whose values vary from zero 20 (undamaged) to unity (complete loss of stiffness) as the material deteriorates. 21 For pure mode (I, II or III) loading, a linear softening process starts when the 22 interfacial stress reaches the respective strength $\sigma_{u,i}$ (see Fig. 11.4). The 23 softening relationship can be written as 24 25

$$\boldsymbol{\sigma} = (\mathbf{I} - \mathbf{D})\mathbf{E}\boldsymbol{\delta}_{\mathrm{r}}$$
 11.8

where **I** is the identity matrix and **D** is a diagonal matrix containing, on the position corresponding to mode i (i = I, II, III), the damage parameter,

$$d_{i} = \frac{\delta_{u,i}(\delta_{i} - \sigma_{o,i})}{\delta_{i}(\delta_{u,i} - \sigma_{o,i})}$$

$$11.9 \qquad 30 \\ 31$$

where $\delta_{o,i}$ and $\delta_{u,i}$ are, respectively, the onset and ultimate relative displacements of the softening region (see Fig. 11.4), and δ_i is the current relative displacement. The maximum relative displacement, $\delta_{u,i}$, at which complete failure occurs, is obtained by equating the area under the softening curve to the respective critical strain energy release rate

$$G_{ic} = \frac{1}{2}\sigma_{u,i}\delta_{u,i}$$
11.10
39
40

In general, structures are subjected to mixed-mode loadings. Therefore, a formulation for interface elements should include a mixed-mode damage model, which, in this case, is an extension of the pure mode model described 43

Woodhead Publishing Limited; proof copy not for publication

26

27

28

32

33

34

35

36

334 Delamination behaviour of composites

above (see Fig. 11.4). Damage initiation is predicted by using a quadratic stress criterion

$$\left(\frac{\sigma_{\mathrm{I}}}{\sigma_{u,\mathrm{I}}}\right)^{2} + \left(\frac{\sigma_{\mathrm{II}}}{\sigma_{u,\mathrm{II}}}\right)^{2} + \left(\frac{\sigma_{\mathrm{III}}}{\sigma_{u,\mathrm{III}}}\right)^{2} = 1 \quad \text{if } \sigma_{1} \ge 0$$

$$\left(\frac{\sigma_{\mathrm{II}}}{\sigma_{u,\mathrm{II}}}\right)^{2} + \left(\frac{\sigma_{\mathrm{III}}}{\sigma_{u,\mathrm{III}}}\right)^{2} = 1 \quad \text{if } \sigma_{1} \le 0$$

$$11.11$$

assuming that normal compressive stresses do not promote damage. Considering Equation 11.7, the first equation 1.11 can be rewritten in function of relative displacements

$$\left(\frac{\delta_{om,\mathrm{I}}}{\delta_{o,\mathrm{I}}}\right)^2 + \left(\frac{\delta_{om,\mathrm{II}}}{\delta_{o,\mathrm{II}}}\right)^2 + \left(\frac{\delta_{om,\mathrm{III}}}{\delta_{o,\mathrm{III}}}\right)^2 = 1$$
11.12

 $\delta_{om,i}$ (*i* = I, II, III) being the relative displacements corresponding to damage initiation. Defining an equivalent mixed-mode displacement

$$\delta_m = \sqrt{\delta_{\rm I}^2 + \delta_{\rm II}^2 + \delta_{\rm III}^2}$$
 11.13

21 and mixed-mode ratios

$$\beta_i = \frac{\delta_i}{\delta_1} \tag{11.14}$$

the mixed-mode relative displacement at the onset of the softening process (δ_{om}) can be obtained combining Equations 11.12–11.14.

$$\delta_{om} = \delta_{o,\mathrm{I}} \,\delta_{o,\mathrm{II}} \,\delta_{o,\mathrm{II}} \,\sqrt{\frac{1 + \beta_{\mathrm{II}}^2 + \beta_{\mathrm{III}}^2}{(\delta_{o,\mathrm{II}} \delta_{o,\mathrm{III}})^2 + (\beta_{\mathrm{II}} \delta_{o,\mathrm{I}} \delta_{o,\mathrm{III}})^2 + (\beta_{\mathrm{III}} \delta_{o,\mathrm{I}} \delta_{o,\mathrm{III}})^2}}$$

$$11.15$$

The corresponding relative displacement for each mode, $\delta_{om,i}$, can be obtained from Equations 11.13–11.15.

$$\delta_{om,i} = \frac{\beta_i \delta_{om}}{\sqrt{1 + \beta_{II}^2 + \beta_{III}^2}}$$
11.16

Once a crack has initiated the above stress-based criterion cannot be used in the vicinity of the crack tip due to stress singularity. Consequently, the mixed-mode damage propagation is simulated using the linear fracture energetic criterion

$$\frac{42}{43} \qquad \qquad \frac{G_{\mathrm{I}}}{G_{\mathrm{Ic}}} + \frac{G_{\mathrm{II}}}{G_{\mathrm{IIc}}} + \frac{G_{\mathrm{III}}}{G_{\mathrm{IIIc}}} = 1$$

$$11.17$$

Woodhead Publishing Limited; proof copy not for publication

WH-Delamination-11

Interaction of matrix cracking and delamination 335

11.18

The released energy in each mode at complete failure can be obtained from the area of the minor triangle of Fig. 11.4.

$$G_i = \frac{1}{2} \sigma_{um,i} \delta_{um,i}$$

Considering Equations 11.7, 11.13 and 11.14, the energies (Equations [11.10 and 11.18]) can be written in function of relative displacements. Substituting into Equation 11.17, it can be obtained

$$\delta_{um} = \frac{2(1 + \beta_{\rm II}^2 + \beta_{\rm III}^2)}{e\,\delta_{om}} \left[\frac{1}{G_{\rm Ic}} + \frac{\beta_{\rm II}^2}{G_{\rm IIc}} + \frac{\beta_{\rm III}^2}{G_{\rm IIIc}} \right]$$
11.19

which corresponds to the mixed-mode displacement at failure. The ultimate relative displacements in each mode, $\delta_{um,i}$, can be obtained from Equations 11.13, 11.14 and 11.19

$$\delta_{um,i} = \frac{\beta_i \delta_{um}}{\sqrt{1 + \beta_{II}^2 + \beta_{III}^2}}$$
 11.20

The damage parameter for each mode can be obtained substituting $\delta_{om,i}$ and $\delta_{um,i}$ in Equation 11.19.

The interaction between matrix cracking and delamination in $(0_4, 90_4)_s$ carbon-epoxy laminates under low velocity impact was simulated using a cohesive damage model (de Moura and Gonçalves, 2004). Circular clamped plates of 50 mm diameter were tested and damage, identified by X-ray method, was constituted by:

- a longitudinal long crack parallel to fibres direction in the outermost group of equally oriented layers and caused by bending loading;
- an extensive delamination located at the distal interface between differently oriented layers relatively to the loaded surface; the delamination has a characteristic two-lobed shape with its major axis oriented on the direction of the lower adjacent ply.
 28
 29
 30
 31
 32

In the numerical model only half plate was considered due to geometrical and material symmetrical conditions. With the aim to numerically simulate this damage mechanism, interface finite elements were placed at the critical interface in order to simulate the observed delamination, and at the vertical symmetry plane of the used mesh. The objective of these vertical elements was to model the onset and growth of the longitudinal bending crack in the outermost group of equally oriented layers which was observed to be the initial damage (see Fig. 11.5). This crack induces delamination in the adjacent interface as it can be seen in Fig. 11.6. This damage mechanism occurs in a progressive way, i.e., the growth of the vertical crack is associated with an increasing delamination. Numerical results agreed with the experiments.

336 Delamination behaviour of composites

338 Delamination behaviour of composites

Although promising results were obtained with this approach it should be emphasized that it cannot be considered an adequate prediction model for more general applications. In fact, in laminates with several different oriented layers it is not suitable to include numerous vertical interface elements in all layers to predict matrix cracking in any layer. The alternative is to consider that solid elements can also include a damage model in order to simulate damage inside layers. This can be done using continuum damage mechanics which is discussed in the next section.

11.3 Continuum damage mechanics

12 The classical approaches based on strength of materials usually assume that 13 once matrix cracking arises, a sudden loss of material properties occur, 14 which is generally denominated by ply discount models (Hwang and Sun, 15 1989). However, it is known that in presence of matrix cracking, the composite 16 does not loose its load carrying capacity immediately. In fact, damage can be 17 considered as the progressive weakening mechanism which occurs in materials 18 prior to failure. It can be constituted by micro-cracking, voids nucleation and 19 growth, and several inelastic processes that deteriorate the material. The 20 analysis of cumulative damage is fundamental in life prediction of components 21 and structures under loading. Tan (1991) proposed a progressive damage 22 model relating the material elastic properties with internal state variables 23 D_i^T and D_i^C (*i* = 1, 2, 6), ranging between 0 and 1, that are function of the 24 type of damage. When a given failure criterion is satisfied, the material 25 properties are abruptly reduced according to the respective residual strength 26 experimentally observed. Each damage mode is predicted by the subsequent 27 expressions:

Fibre tensile fracture

$$E_{11}^d = D_1^T E_{11}; v_{12}^d = v_{13}^d = 0$$
 11.21

32 Fibre compressive fracture

$$E_{11}^d = D_1^C E_{11}; \, v_{12}^d = v_{13}^d = 0$$
 11.22

Matrix tensile failure

$$E_{22}^{d} = D_{2}^{T} E_{22}; E_{33}^{d} = D_{2}^{T} E_{33}; v_{12}^{d} = v_{23}^{d} = 0$$

$$G_{12}^{d} = D_{5}^{T} G_{12}; G_{13}^{d} = D_{5}^{T} G_{13}; G_{23}^{d} = D_{5}^{T} G_{23}$$
11.23

40 Matrix compressive failure or shear cracking

42
42
43

$$E_{22}^{d} = D_{2}^{C} E_{22}; E_{33}^{d} = D_{2}^{C} E_{33}; v_{12}^{d} = v_{23}^{d} = 0$$

 $G_{12}^{d} = D_{6}^{C} G_{12}; G_{13}^{d} = D_{6}^{C} G_{13}; G_{23}^{d} = D_{6}^{C} G_{23}$
11.24

Woodhead Publishing Limited; proof copy not for publication

WH-Delamination-11

1

2

З

4

5

6

7

8

9 10

11

30 31

33 34 35

1

2

3

4 5

10

11

12 13

18 19

20

21 22 23

24

26 27

The author (Tan, 1991 and Tan and Perez, 1993) obtained good agreement with experimental results considering $D_1^T = 0.07$, $D_2^T = D_6^T = 0.2$, $D_1^C = 0.14$ and $D_2^C = D_6^C = 0.4$. Although this type of models consider a residual strength in accordance with the physical reality they are mesh dependent during numerical analysis.

To avoid the sudden loss of material properties and mesh dependency, the 6 7 continuum damage models combining strength of materials and fracture 8 mechanics concepts are an appealing alternative. Material damage is simulated 9 by introducing damage variables into the constitutive equations (Lemaitre and Chaboche, 1985). After the matrix cracking initiation is predicted, a gradual softening post-failure analysis is also performed by appropriately reducing the material properties within the elements where matrix cracking onset occurred.

Ladevèze and Le Dantec (1992) developed a continuum damage mechanics 14 formulation for orthotropic materials to account for ply degradation. 15 Considering a damaged layer in a state of plane stress the strain-stress 16 17 relationship take the general form

$$\epsilon = S\sigma$$
 11.25

where ϵ and σ are vectors of elastic strain and stress, respectively. In a local system associated with orthotropy axes it can be written

$$\boldsymbol{\sigma} = (\sigma_{11}, \sigma_{22}, \sigma_{12})^{\mathrm{T}}; \boldsymbol{\epsilon} = (\varepsilon_{11}, \varepsilon_{22}, 2\varepsilon_{12})^{\mathrm{T}}$$
 11.26

and S the compliance matrix

$$\frac{1}{(1-d_1)}$$
 $-\frac{v_{12}}{E_1}$ 0

$$\mathbf{S} = \begin{bmatrix} -\frac{v_{12}}{E_1} & \frac{1}{E_2(1-d_2)} & 0\\ 0 & 0 & \frac{1}{C_2(1-d_2)} \end{bmatrix}$$
 11.27 28
29
30

$$\overline{G_{12}(1-d_{12})}$$

32 The damage parameters $(d_1, d_2 \text{ and } d_{12})$ define the damage state for the three 33 types of stress loading and varies between 0 (undamaged state) and 1 (complete 34 loss of stiffness). No additional parameter is used to simulate degradation in 35 Poisson's ratios as they are intrinsically affected during damage progression; v_{12} is reduced by the factor (1-d₁), since for a uniaxial stress σ_{11} it can be 37 shown from Equations 11.25, 11.26 and 11.27 that $-\varepsilon_{22}/\varepsilon_{11} = v_{12}(1 - d_1)$; 38 similarly it can be easily demonstrated that v_{21} is affected by $(1 - d_2)$. In 39 order to establish the evolution of damage parameters in function of the 40 damage growth the concept of strain energy density φ is used 41

$$\varphi = \frac{1}{2} \sigma^{\mathrm{T}} \mathbf{S} \sigma \qquad \qquad 11.28 \qquad 42 \\ 43 \qquad \qquad 43$$

340 Delamination behaviour of composites

The theory also includes the concept of 'thermodynamic forces', Y_1 , Y_2 , Y_{12} , associated with the internal damage variables d_1 , d_2 , d_{12} . Those parameters are also considered as driving forces for damage development and are defined by

$$\mathbf{Y} = \frac{\partial \varphi}{\partial \mathbf{d}}$$
 11.29

where $\mathbf{Y} = (Y_1, Y_2, Y_{12})^{T}$ and $\mathbf{d} = (d_1, d_2, d_{12})^{T}$. Combining Equations 11.28 and 11.29 it follows

$$Y_{1} = \frac{\sigma_{11}^{2}}{2E_{1}(1-d_{1})^{2}}; Y_{2} = \frac{\sigma_{22}^{2}}{2E_{2}(1-d_{2})^{2}}; Y_{12} = \frac{\sigma_{12}^{2}}{2G_{12}(1-d_{12})^{2}}$$
11.30

In the absence of fibre breakage d_1 is zero throughout the load history and the longitudinal modulus does not degrade; therefore only Y_2 and Y_{12} driving forces should be considered to model matrix cracking. A linear combination

$$Y = Y_{12} + bY_2$$
 11.31

where *b* is a material constant, can be used to account for coupling between transverse tension and shear effects. To avoid healing phenomena the maximum value of \hat{Y} up to the current time *t* is defined as

$$\hat{Y}(t) = \max_{\tau \le t} \left(Y_{12} + bY_2 \right)$$
 11.32

Experimental results for carbon-epoxy laminates showed that damage parameters can be written as

31

1 2

З

4

9

19

23

24 25

$$d_{12} = \frac{\sqrt{\hat{Y}} - \sqrt{Y_0}}{\sqrt{Y_C}}; d_2 = \frac{\sqrt{\hat{Y}} - \sqrt{Y_0'}}{\sqrt{Y_C'}}$$
 11.33

where Y_0, Y_C, Y'_0 and Y'_C are damage evolution parameters. They are determined experimentally performing tension tests on $[\pm 45]_s$ and $[\pm 67.5]_s$ laminates (Ladevèze and Le Dantec, 1992). The model was tested on $[\pm 45]_{2s}$, [67.5,22.5]_{2s} and $[-12, 78]_{2s}$ laminates under tensile loading and excellent agreement was obtained with the respective experimental σ - ε curves.

An approach similar to the one used in the cohesive damage model described in Section 11.2 is proposed by other authors (Crisfield *et al.*, 1997; Pinho *et al.*, 2006; de Moura and Chousal, 2006). In this case there is a softening relationship between stresses and strains instead of between stresses and relative displacements considered in the cohesive model. Consequently, in this case a characteristic length l_c must be introduced to transform the relative displacement into an equivalent strain. (see Fig. 11.4)

Woodhead Publishing Limited; proof copy not for publication

WH-Delamination-11

Interaction of matrix cracking and delamination 341

$$G_{ic} = \frac{1}{2} \sigma_{u,i} \varepsilon_{u,i} l_c$$

σ

This parameter was considered to be equal to the length of influence of a Gauss point in the given direction and physically can be regarded as the dimension at which the material acts homogeneously. The stress–strain relation can be written considering an equation similar to Equation 11.8

$$= (\mathbf{I} - \mathbf{D})\mathbf{C}\mathbf{\epsilon}$$

being **C** the stiffness matrix of the undamaged material in the orthotropic directions. Assuming that matrix cracking occur in mixed-mode I+II the damage model described in Section 11.2 can be adopted. The damage parameter is calculated by an expression similar to Equation 11.9 but considering strains instead of relative displacements. A linear softening law is also used. The properties are smoothly reduced due to the energy released at the FPZ. The material properties at a given Gauss point are degraded according to the assumed criterion. This leads to load redistribution for the neighbouring points, thus simulating a gradual propagation process.

In summary, it can be affirmed that these methods allow simulating damage inside solid finite elements used to model composite layers and can be used to simulate matrix cracking phenomenon. A gradual degradation of properties instead of a sudden one avoids the singularity effects and minimizes the consequent mesh sensitivity.

11.4 Conclusions

26 Matrix crack and delamination are intrinsically associated in composite 27 materials, namely under bending loads. The interaction between these two 28 modes of damage constitutes a complex damage mechanism that has not 29 been addressed in a realistic level. Such interaction is fundamental to be considered in a failure model prediction because one mode may initiate the 31 other and they may intensify each other. Two different models come out to 32 deal with the referred damage modes. Mixed-mode cohesive damage models 33 join the positive arguments of stress based and fracture mechanics criteria 34 overcoming their inherent difficulties. These models have being used with 35 success to simulate delamination initiation and growth. They are usually based on interface finite elements including a softening relationship between 37 stresses and relative displacements. The continuum damage mechanics is being applied on the simulation of matrix cracking. These models are based 39 on the introduction of damage parameters into the constitutive equations in 40 order to simulate material damage. These damage parameters increase smoothly 41 with growing damage, leading to a slow degradation of material properties 42 instead of an abrupt one which is not realistic and originate mesh dependencies. 43

Woodhead Publishing Limited; proof copy not for publication

WH-Delamination-11

11.35

11.34

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

342 Delamination behaviour of composites

1 In summary, cohesive and continuum damage models are actually the 2 most prominent numerical tools in order to simulate matrix cracking inducing 3 delamination damage mechanism of composites. However, it should be 4 recognized that an accurate methodology addressing all the realistic issues 5 of this complex damage mechanism is still lacking. The solution points to 6 the development of a numerical tool incorporating the two kinds of models. 7 The two methods (cohesive elements and damage mechanics) can coexist. In 8 fact, both models can be implemented via user subroutines in commercial 9 software. When the selected damage criterion in a solid element is satisfied 10 the element fails simulating matrix cracking. This induces important relative 11 displacements at the adjacent interfaces leading to delamination initiation 12 and propagation according to the damage criterion of the cohesive elements. 13 Some aspects should require special attention like the influence of stress 14 concentration at the intersection of a critical matrix crack with a given interface. 15 It is not clear up to now if the coexistence of the two methods will be able 16 to accurately model such particularity. Some efforts should also be dedicated 17 to the development stress and fracture criteria adequate to the specificities of 18 this damage mechanism. 19

11.5 References

20

21

22	Choi H Y, Downs R J, Chang F K (1991a), 'A new approach toward understanding
23	damage mechanisms and mechanics and mechanics of laminated composites due to
24	low-velocity impact: part I - experiments', Journal of Composites Materials, 25,
25	992–1011.
20	Choi H Y, Wu H-Y, Chang F K (1991b), 'A new approach toward understanding damage
20	mechanisms and mechanics and mechanics of laminated composites due to low-velocity
27	impact: part II – analysis, Journal of Composites Materials, 25, 1012–1038.
28	Choi H Y, Chang F K (1992), 'A model for predicting damage in graphite/epoxy laminated
29	composites resulting from low-velocity point impact', Journal of Composite Materials,
30	26 , 2134–2169.
31	Crisfield M, Mi Y, Davies G A O, Hellweg H B (1997), 'Finite element methods and the
32	progressive failure modelling of composites structures', in Owen D R J, Oñate E and
33	Hinton E, Computational Plasticity – Fundamentals and Applications, Barcelona,
37	CIMNE, 239–254.
04	Cui W, Wisnom M R (1993), 'A combined stress-based and fracture-mechanics-based
33	model for predicting delamination in composites', Composites, 24, 467–474.
36	de Moura M F S F, Gonçalves J P M, Marques A T, de Castro P M S T (2000), 'Prediction
37	of compressive strength of carbon-epoxy laminates containing delamination by using
38	a mixed-mode damage model', <i>Composite Structures</i> , 50 , 151–157.
39	de Moura M F S F, Marques A T (2002), 'Prediction of low velocity impact damage in
40	carbon-epoxy laminates', Composites: Part A, 33, 361–368.
41	de Moura M F S F, Gonçalves J P M (2004), 'Modelling the interaction between matrix
12	cracking and delamination in carbon-epoxy laminates under low velocity impact',
10	Composites Science and Technology, 64, 1021–1027.
43	de Moura M F S F, Chousal J A G (2006), 'Cohesive and continuum damage models

Interaction of matrix cracking and delamination 343

 applied to fracture characterization of bonded joints', <i>International Journal of Mechanical Sciences</i>, 48, 493–503. Gonçalves J P M, de Moura M F S F, de Castro P M S T, Marques A T (2000), 'Interface element including point-to-surface constraints for three-dimensional problems with damage propagation', <i>Engineering Computations</i>, 17, 28–47. Hwang W C, Sun C T (1989), 'Failure analysis of laminated composites by using iterative three-dimensional finite element method', <i>Computers and Structures</i>, 33, 41–47. Joshi S P, Sun C T (1985), 'Impact induced fracture in a laminated composite', <i>Journal of Composite Materials</i>, 19, 51–66. 	1 2 3 4 5 6 7 8
 Krueger R (2002), 'The Virtual Crack Closure Technique: History, Approach and Applications', Nasa/CR-2002-211628, Icase Report No. 2002-10. Ladevèze P, Le Dantec E (1992), 'Damage modelling of the elementary ply for laminated composites', <i>Composites Science and Technology</i>, 43, 257–267. Lammerant L, Verpoest I (1996), 'Modelling of the interaction between matrix cracks and delaminations during impact of composite plates', <i>Composites Science and Technology</i>, 56, 1171–1178. 	9 10 11 12 13 14
 Lemaitre J, Chaboche J-L (1985), 'Mécanique des matériaux solides', Paris, Dunod. Levin, K (1991), 'Characterization of delamination and fiber fractures in carbon reinforced plastics induced from impact', in M Jono, T Inoue, N Z Gakkai, and K K S Zaidan Mechanical Behavior of Materials-VI, Pergamon Press, Oxford, 1, 615–622. Liu D, Malvern L E (1987), 'Matrix cracking in impacted glass/epoxy plates', Journal of Composite Materials, 21, 594–609. Liu S, Kutlu Z, Chang F-K (1993), 'Matrix cracking and delamination in laminated composite beams subjected to a transverse concentrated line load', Journal of Composite Materials, 27, 426, 470. 	15 16 17 18 19 20 21
 Materials, 27, 430–470. Mi Y, Crisfield M A, Davies G A O, Hellweg H-B (1998), 'Progressive delamination using interface elements', <i>Journal of Composite Materials</i>, 32, 1246–1272. Olsson R, Asp L E, Nilsson S, Sjögren A (2000), 'A review of some key developments in the analysis of the effects of impact upon composite structures', in P Grant and C Q Rousseau <i>Composite Structures: Theory and Practice</i>, ASTM STP 1383, 12–28. Petrossian Z, Wisnom M R (1998), 'Prediction of delamination initiation and growth from discontinuous plies using interface elements', <i>Composites Part A</i>, 29A, 503–515. Pinho S T, Iannuci L, Robinson P (2006), 'Physically based failure models and criteria for laminated fibre rainforced composites with emphasis on fibre kinking. Pat II: EFF 	22 23 24 25 26 27 28 29 30
 implementation', <i>Composites Part A</i>, 37, 766–777. Takeda N, Sierakowski R L, Malvern L E (1982), 'Microscopic observations of cross sections of impacted composite laminates', <i>Composites Technology Review</i>, 4(2), 40–44. Tan S C (1989), 'Effective stress fracture models for unnotched and notched multidirectional laminates', <i>Journal of Composite Materials</i>, 23, 1082–1104. Tan S C (1991), 'A progressive failure model for composite laminates containing openings', 'Anti-Ambrida Composite Materials', Composite Laminates Containing openings', 'Effective stress', 'Laminate', 'Laminate',	31 32 33 34 35 36
 Journal of Composite Materials, 25, 556–577. Tan S C, Perez J (1993), 'Progressive failure of laminated composites with a hole under compressive loading. Journal of Reinforced Plastics and Composites, 12, 1043–1057. Whitney J M, Nuismer R J (1974), 'Stress fracture criteria for laminated composites containing stress concentrations', Journal of Composite Materials, 8, 253–265. Zou Z, Reid S R, Li S, Soden P D (2002), 'Modelling interlaminar and intralaminar damage in filament-wound piped under quasi-static indentation', Journal of Composite Materials, 36, 477–499. 	37 38 39 40 41 42 43