
EDR: Securing
Low-level tracing
for intrusion
detection

Guilherme Pereira
Masters in Network and Information System Engineering
Department of Computer Science
Faculty of Sciences of the University of Porto
2023/2024

EDR: Securing
Low-level tracing
for intrusion
detection

Guilherme Pereira
Dissertation carried out as part of
the Masters in Network and Information System Engineering
Department of Computer Science
2023/2024

Supervisor
Rolando Martins, Professor and Researcher at Faculty of
Sciences, University of Porto

FCUP
EDR: Securing Low-level tracing for intrusion detection

ii

Resumo

A constante monitorização e recolha de dados nas infraestruturas modernas para

deteção, proteção e análise do fluxo de dados em tempo real é um aspeto crucial dos

sistemas de sistemas de deteção e resposta (EDR). Esta tese apresenta uma

ferramenta de rastreio de baixo nível como prova de conceito para uma solução EDR

flexível e personalizável. Esta solução, baseada em eBPF e na deteção de anomalias

com a utilização de redes neuronais, foi concebida para se adaptar às necessidades

específicas de diferentes infraestruturas. O seu objetivo é extrair e analisar o contexto

da rede a partir de operações de baixo nível e aplicar heurísticas de filtragem de pacotes

e de estado para a deteção contínua de padrões de rede em cargas de trabalho

distribuídas, utilizando o Intel SGX e interpolando o tráfego quando certas condições

previamente definidas são cumpridas. Ao concentrar-se em dois contextos de

exploração distintos, o EDR posiciona-se como uma unidade defensiva para detetar e

interpolar o tráfego. A deteção de padrões na rede é responsável pelas capacidades do

eBPF e da aprendizagem automática; o eBPF é utilizado como classificador inicial e a

rede neural feed-forward é apresentado como um segundo classificador que irá

aprender continuamente com o contexto posicionado, bem como aplicará previsões de

um modo contínuo.

FCUP
EDR: Securing Low-level tracing for intrusion detection

iii

Abstract

The constant monitoring and collection of data within modern infrastructures for

detection, protection, and real-time data flow analysis is a crucial aspect of Endpoint

Detection and Response (EDR) systems. This thesis presents a proof-of-concept low-

level tracing tool as a fundamental element for a flexible and customisable EDR solution.

This solution, based on eBPF and anomaly detection using neural networks, is designed

to adapt to the unique needs of different infrastructures. It aims to extract and analyse

network context from low-level operations and apply stateful and packet filtering

heuristics for continuous network pattern detection across distributed workloads, using

Intel SGX and interpolating traffic when previously defined conditions are met. By

focusing on two distinct exploitation contexts, the EDR is positioned as a defensive unit

for detecting and interpolating traffic. Distributed network detection is accountable for

both eBPF and machine learning capabilities; eBPF is used as the initial classifier, and

the feed-forward neural network is a second classifier that will continuously learn from

the positioned context as well as apply continuous predictions.

FCUP
EDR: Securing Low-level tracing for intrusion detection

iv

Table of Contents

List of Code Samples .. v

List of Figures ... vi

List of Abbreviations .. vii

List of Definitions ... vii

1. Introduction ... 1

2. Background... 3

2.1. aya-rs ... 5

2.2. Intel SGX .. 5

2.3. Infrastructure .. 6

2.4. Logging .. 7

2.5. Vulnerable Targets .. 8

2.6. Anomaly Detection ... 8

3. Motivation ... 10

3.1. Attacker Model ... 10

4. Architecture... 14

4.1. eBPF Maps .. 14

4.2. Kernel-space .. 15

4.3. User-space ... 24

5. Modus Operandi ... 32

6. Testing and Analysis .. 34

6.1. Log4Shell ... 34

6.1.2. Attack Vectors ... 35

6.1.3. Command Interpolations .. 36

6.1.4. Command Variants ... 37

6.1.5. Reporting .. 38

6.2. LDAP .. 40

7. Conclusion .. 43

FCUP
EDR: Securing Low-level tracing for intrusion detection

v

7.1. Limitations and Future Work.. 43

References ... 45

List of Code Samples

Code 1 - XDP (C) Program .. 3

Code 2 - Unsecure Log4j Handler Example .. 12

Code 3 - EventLog Definition ... 25

FCUP
EDR: Securing Low-level tracing for intrusion detection

vi

List of Figures

Figure 1 - EDR Overview ..2

Figure 2 - BPF CO-RE Overview ...4

Figure 3 - aya-rs Build Overview ...5

Figure 4 - Log4Shell RCE ...10

Figure 5 - JNDI:LDAP Lookup Overview ...13

Figure 6 - LDAP Tracing Overview ..13

Figure 7 - EDR Architecture ..14

Figure 8 - EDR eBPF Maps ...14

Figure 9 - Kernelspace overview ...16

Figure 10 - Kernelspace analysis interface context ..16

Figure 11 – Kernel space analysis Docker context ..17

Figure 12 - TC Attachment Context ...17

Figure 13 - EDR TC Tracing ..18

Figure 14 - XDP Attachment Context ..19

Figure 15 - XDP Tracing ...20

Figure 16 - XDP Tracing Timestamped ...21

Figure 17 - Ping Example ..23

Figure 18 – User-space ...24

Figure 19 - Userspace / Confidential Computing Operation (SGX)26

Figure 20 - Feature Extraction ...28

Figure 21 - Code Structure ..32

Figure 22 - Configuration Parameter ...33

Figure 23 - Log4Shell Overview ..34

Figure 24 - Malicious proxy ...35

Figure 25 - Reverse Shell JNDI Payload ...35

Figure 26 – Payload Analysis ..36

Figure 27 - Exploit Detection 1 ..36

Figure 28 - Exploit Detection 2 ..36

Figure 29 - Command Variants ...37

Figure 30 - Exploit Detection cURL ...38

Figure 31 - Reporting ..39

Figure 32 - Logs cross-reference ..39

Figure 33 - LDAP Overview ...40

Figure 34 - LDAP Run ...41

Figure 35 - LDAP Detection and Prediction ...41

FCUP
EDR: Securing Low-level tracing for intrusion detection

vii

List of Abbreviations

FCUP

UP

AI

FACULTY OF SCIENCES OF THE UNIVERSITY OF PORTO

UNIVERSITY OF PORTO

ARTIFICIAL INTELLIGENCE

CA

EDR

RCE

SDK

MQ

TLS

JNDI

BPF

BTF

CO-RE

EBPF

XDP

TC

SGX

CERTIFICATE AUTHORITY

ENDPOINT DETECTION AND RESPONSE

REMOTE CODE EXECUTION

SOFTWARE DEVELOPMENT KIT

MESSAGE QUEUE

TRANSPORT LAYER SECURITY

JAVA NAMING AND DIRECTORY INTERFACE

BERKELEY PACKET FILTER

BPF TYPE FORMAT

COMPILE ONCE – RUN EVERYWHERE

EXTENDED BERKELEY PACKET FILTER

EXPRESS DATA PATH

TRAFFIC CONTROL

SOFTWARE GUARD EXTENSIONS

List of Definitions

Attacker Model – Paradigm which considers a malicious actor, vulnerable target and

proposed EDR solution. Offensive and defensive postures are dependent on the

exploit being explored (i.e., either Remote Code Exploitation or Information Gathering /

Leakage).

FCUP
EDR: Securing Low-level tracing for intrusion detection

1

1. INTRODUCTION

Endpoint Detection and Response (EDR) systems have emerged as a pivotal component

in modern infrastructures, particularly in the realm of data security. These systems are

designed to continuously monitor and gather data, aiding in detection, sovereignty, and

real-time interpolation of data flows in the residing infrastructure. In the EDR landscape,

there are open and closed source solutions that provide several strategies for intrusion

detection and prevention:

- Wazuh: Open-source security monitoring platform which provides intrusion

detection, log data analysis and file integrity monitoring using the Elastic Stack,

[1].

- OSSEC: An open-source host-based intrusion detection capable of applying log-

based intrusion, rootkit, malware detection, active response, compliance

auditing, file integrity monitoring and system inventory, [2].

- CrowdStrike Falcon: EDR solution with advanced threat hunting, alerting and

automated investigation capabilities used by mid to large-sized enterprises [3].

- SentinelOne: AI-powered prevention, detection, response and hunting platform

with endpoint transparency and autonomous real-time action, with several

advanced functionalities based on the selected service [4].

This thesis proposes an alternative solution for intrusion detection and prevention, based

on eBPF filtering and the use of hardware security modules (i.e., Intel SGX) for

confidential computing. Sovereignty, configuration and management of data produced

by the proposed tool, as well as deployment and configuration of Wazuh and RabbitMQ,

were not considered in this thesis. Although not addressed, these configurations and

setting are publicly available from the source-code developed and used throughout this

thesis, referenced as edrc2u under the branch: thesis-poc hosted in GitHub [5].

As objectives, the following capabilities and functionalities were considered for the proof-

of-concept tool, so that it would be possible to analyse network traffic from pre-defined

targets:

• Securing: To provide a tool capable of interpolating and detecting malicious

activity directed to arbitrary Docker services with a tentative approach to ensure

confidentiality, integrity and authenticity of both scanned and produced traffic,

using a producer/consumer eBPF network traffic filtering stack and Intel SGX-

based anomaly detector subsystem.

FCUP
EDR: Securing Low-level tracing for intrusion detection

2

• Detection and Response: Ensure detection and response capabilities based on

a pre-defined context and defensive assumptions. Such capabilities result in

continuous logs being produced, triaged (i.e., Anomaly Detection) and promptly

forwarded for local and/or remote Wazuh reporting.

• Low-level Tracing: Apply deep and shallow packet inspection techniques to

trace for packet data and meta-data, respectively. Data produced from tracing is

then either logged internally for processing and storage, or promptly forwarded

to a Wazuh instance.

Figure 1 - EDR Overview

FCUP
EDR: Securing Low-level tracing for intrusion detection

3

2. BACKGROUND

eBPF (extended Berkeley Packet Filter) is a revolutionary technology within the Linux

operating system with programmable nature and execution capabilities within the kernel

space. eBPF has garnered significant capabilities in various domains, including system

observability, security, and performance.

In its current form, eBPF provides extended visibility and automation in system-level

activities including real-time events. Several eBPF program types are attachable, most

of which are hooked in distinct sections of the operating system. The eBPF program type

and placement (“hook-point”) are highly dependent on the desired functionalities and

purpose (i.e., Networking, security, performance and/or monitoring).

There are several eBPF program types, but for the EDR's network tracing stack, only the

eXpress Data Path (XDP) and Traffic control (TC) types were considered [6]. The stack

is thus compromised of two eBPF programs, XDP and TC, running simultaneously in

opposite network planes to capture data flowing to and from our source (i.e., Host, where

eBPF programs are attached). XDP is "hooked" at the network driver level allowing the

program to interpolate (i.e.: pass, drop or redirect) network data packets before they

reach the host's operating system network stack, thus providing high-performance

packet processing. The TC program is directly attached to the host's operating system

network stack, processing packets as they reach or leave the host [7]. Current solutions

such as CrowdStrike Falcon XDR [3] or Cilium’s Tetragon [8] also consider a similar

approach, leveraging eBPF for low-level tracing and automation for improved security

and sovereignty.

Code 1 - XDP (C) Program

eBPF adoption was initially stymied due to program compatibility issues across different

versions of the Linux kernel. However, BPF CO-RE (Compile Once - Run Everywhere)

FCUP
EDR: Securing Low-level tracing for intrusion detection

4

provided a modern approach to allow eBPF to be compiled once and run correctly across

different kernel versions without the need for multiple compilations. This portability came

at a cost since, once eBPF programs are loaded, verified and executed in the kernel

context, they are still subject to the surrounding memory layout of the kernel environment

with constrained control [9].

One of the crucial enablers of this approach was the progressive adoption of BPF Type

Format (BTF) by the Linux kernel as the natural successor of DWARF for representing

and describing all the types of information of the inherent C programs (kernel-space).

This transition resulted due to the simplicity, de-duplication algorithm and consequential

reduction in size of BTF when compared to DWARF [10].

Figure 2 - BPF CO-RE Overview

In a traditional BPF CO-RE deployment, there are several needed components: the

target kernel, user-space BPF loader library (i.e., libbpf) and a compiler (Clang). The

BPF loader library is responsible for linking and verifying the generated BPF bytecode

with the available BTF type information. Verification of the pre-compiled BPF program

requires verifying discrepancies between different kernels (and their types). Linking is

then performed by the BPF loader library, which is responsible for adjusting the BPF

code to the specific target kernel type and promptly attaching it to the relevant "hook

points". The target kernel where the BPF program(s) is to be attached can stay

completely agnostic, as the kernel type is verified and pre-compiled using the generated

BTF type information (i.e., vmlinux.h – header file with target kernel information) [9].

FCUP
EDR: Securing Low-level tracing for intrusion detection

5

2.1. aya-rs

aya-rs is a Rust library that simplifies the described eBPF compilation process. It is built

purely with Rust, using only the C standard library (i.e., libc) to execute system calls

when necessary. This library provides a Rust-based wrapper for building eBPF programs

and their corresponding loader(s) [11].

Figure 3 - aya-rs Build Overview

One key distinction of this library from its traditional counterpart is the requirement for

both kernel-space and user-space code. This is essential for the swift verification,

attachment, and execution of the eBPF program(s) (t=1). Syntax and program

constraints must be followed, including additional steps for eBPF programs that rely on

internal kernel-type definitions. In such cases, the respective type definitions must be

generated in advance and then imported into our eBPF Rust code. This process ensures

that the code is ready for deployment (t=0) [12].

With this deployment, eBPF programs run in a constrained runtime environment with no

access to the host's heap space and limited stack size (i.e., 512 bytes). Rust code is also

restricted to the 'core' library, the standard library can't be used as the code will be

executed in kernel-space.

2.2. Intel SGX

Intel's Software Guard Extensions (SGX) is a technology which provides the means for

provisioning a hardware enclave within the host. SGX enclaves are designed to provide

secure execution environments within a CPU to protect code and data from disclosure

or modification, where sensitive data and/or code can be securely executed, shielding

them from potential external breaches, even if the host is compromised [13]. Intel's SGX

creates isolated code-execution regions in memory that are protected by hardware

encryption. This technology allows developers to run and protect code by using

FCUP
EDR: Securing Low-level tracing for intrusion detection

6

protections in the processor to ensure that a malicious actor cannot directly access

enclave memory at runtime [14].

2.2.1 Rust Environment

Building and running a Rust-based SGX code is achievable by using Apache's open-

source Incubator Teaclave SGX Software Development Kit (SDK) [15]. This open-source

SDK allows developers to write Rust-based code that will be executed within SGX

enclaves, ensuring data within it cannot be read or tampered with [16].

Developing SGX enclave code in Rust presents unique challenges. Enclaves, where the

code will be executed, lack full access to OS interfaces and hardware. This means that

libraries inheriting Rust's standard library may not be directly used due to the isolation

and specific architectural requirements of SGX. Instead, a subset of the Rust standard

library specifically tailored for the enclave environment is required. This is where

Incubator Teaclave SGX SDK (i.e., sgx_tstd) comes in, providing most of the

functionalities from the standard Rust environment [17].

2.3. Infrastructure

2.3.1 Producer / Consumer Model

In a producer/consumer model, producers are entities that generate and deliver

messages to a message broker (i.e., RabbitMQ). Consumers receive and process these

messages from the broker. With this model, a granular separation of functionalities is

achievable, where computational units can focus solely on the respective MQ role

(producer/consumer) and in the case of consumers, apply other operations on said data.

2.3.2 Transport Layer Security

Transport Layer Security (TLS) is a cryptographic protocol designed to provide secure

communications over networks. As per RFC 5246, “TLS should be used to establish a

secure connection between two parties” and, when applied, can provide integrity and

confidentiality by preventing eavesdropping, tampering or message forgery. TLS was

used to establish and secure communications between the respective producers and

consumers as a pre-emptive measure to ensure no malicious activity can be induced to

skew or alter the intended operations and their underlying logic [18].

Considering the context in which TLS is applied in the EDR, in order to establish a secure

connection, the root CA certificate, client or server certificate and corresponding private

FCUP
EDR: Securing Low-level tracing for intrusion detection

7

key are required. The CA certificate will ensure that the TLS’s server is trusted,

considering that the CA certificate is self-signed. The private key, used in conjunction

with the respective certificate, is a critical component that must be securely stored and

protected. This underscores the importance of maintaining the confidentiality and

integrity of the TLS session.

2.3.3 RabbitMQ

RabbitMQ is an open-source message broker software that implements the Advanced

Message Queuing Protocol (AMQP), designed to facilitate communication by reliably

sending and receiving messages using message queues. RabbitMQ handles storing,

routing and delivering of messages, ensuring asynchronous communication to the

underlying producer and consumer model [19].

Assuming the producer/consumer model with RabbitMQ, messages from producers are

sent to exchanges, which then route them to queues based on internal routing keys and

binding rules. Consumers solely need to subscribe to defined queues and process

messages asynchronously. Producers and consumers require a valid and matching CA

certificate, client certificate, and private key, as well as a server certificate and private

key. For simplicity, upon each run, the CA certificate is self-signed, a client key is

generated using RSA, and a client certificate is issued by the CA (the same process

applies for the server certificate and private key). Before execution, the certificates and

private keys are distributed to the relevant parties, ensuring a secure connection.

2.4. Logging

Logging as a capability is the process of systematically delivering and storing relevant

events to pre-defined destinations. (i.e., Wazuh Manager/Agent and/or SGX enclave). In

this context, these events can be abstracted as system logs (i.e., syslog) [20], which are

sent to remote or local Wazuh instances (Manager or Agent, respectively) for manual

post-processing. Optionally, confidential computing capabilities can be leveraged from

SGX using a long-lasting consumer model (i.e.: inherited from underlying MQ

infrastructure). Rsyslog (Rocket Fast System Logger) manages the storage and delivery

of EDR events and system logs to Wazuh [21]. This framework is central to the EDR

since it is the sole component responsible for forwarding logs from the underlying MQ

infrastructure to the available reporting and visualization agents. Rsyslog natively logs

events captured from the system context but also supports forwarding logs to remote

endpoints using either UDP or TCP. The framework can also be configured to secure

connections using TLS [22].

FCUP
EDR: Securing Low-level tracing for intrusion detection

8

2.5. Vulnerable Targets

Vulnerable targets were used for testing and analysis of the results from the proposed

EDR solution. Both targets were built and executed independently in isolated network

namespaces in Docker. For testing, Spring Boot version 2.6.1 was used with log4j

version 2.14.1 and JDK 1.8.0_181. For LDAP testing, Openldap version 1.4.0 was used.

2.5.1 Spring Framework

Spring Boot is an open-source Java-based framework that simplifies the development of

production-ready applications. It provides a streamlined approach to configuring and

deploying Java applications by incorporating convention over configuration, which

reduces the need for extensive setup. Spring Boot is widely used for its ability to create

stand-alone, production-grade Spring applications with minimal configuration. Log4j, part

of the Apache Logging Services, is a robust logging framework for Java applications.

Log4j's flexible architecture allows for dynamic configuration, multiple output formats,

and efficient log message management. In the context of Spring Boot applications, Log4j

can be seamlessly integrated to provide enhanced logging capabilities [23].

2.5.2 LDAP

Lightweight Directory Access Protocol (LDAP) is a protocol used to access and maintain

distributed directory information services. It is widely employed for managing user

information, authentication, and access control in enterprise environments. OpenLDAP,

an open-source implementation of LDAP, provides a robust and flexible

framework for directory services [24].

2.6. Anomaly Detection

Anomaly detection is a critical task in data analysis aimed to identify patterns that deviate

from expected behavior. In the context of neural networks, particularly feed-forward

models, anomaly detection involves training the network to recognize standard data

patterns and flag deviations as anomalies. Feed-forward neural networks are structured

to process input data sequentially through layers of interconnected nodes, learning

complex patterns through backpropagation. By training on standard data, the network

learns a representation of typical behavior, enabling it to detect anomalies as significant

deviations from this learned representation. Rusty-Machine was leveraged to facilitate

this task. The Rusty-Machine library is a machine-learning framework in Rust that

facilitates the development of such models [25]. It provides tools for constructing and

FCUP
EDR: Securing Low-level tracing for intrusion detection

9

training various models, leveraging Rust's performance and safety features. This library

efficiently handles large datasets, which is crucial for accurate anomaly detection.

FCUP
EDR: Securing Low-level tracing for intrusion detection

10

3. MOTIVATION

3.1. Attacker Model

In this section, we reiterate the EDR's role in mitigating security threats within the explicit

exploitation paradigms. In each paradigm, the attacker poses a security threat, and the

EDR, as the main detection and interpolation unit, provides a secure and protected

environment.

Two attacker models were considered. For each attacker scenario, the proposed tool

was developed to, at least, be able to detect the defined exploit. Interpolation capabilities

are only expressed in the first attacker model (i.e.: Log4Shell) since there is a clear

distribution of traffic and several solutions for mitigating and restricting the behavior of

the malicious actor conducting the exploit.

3.1.1 Log4Shell

Figure 4 - Log4Shell RCE

The Log4Shell vulnerability, CVE-2021-44228, is a JNDI injection flaw in the logging

messages processing in Log4j that can lead to Remote Code Execution [26]. The red

(left) side illustrates the malicious actors, which consists of the dispatcher, responsible

for delivering a malicious JNDI and LDAP connection string, and the corresponding

proxy, which will communicate with a vulnerable instance (blue).

The execution flow behind the Log4Shell vulnerability can be conducted in several ways.

For RCE, a target with a vulnerable Log4j version with a point-of-access/endpoint that

FCUP
EDR: Securing Low-level tracing for intrusion detection

11

allows attackers to send an arbitrary exploit string that is interpreted as a log statement

and logged internally is required. Practically, this was achieved using an SpringBoot

application with a vulnerable log4j version. The exploit relates to abusing Log4j requests

sent to arbitrary LDAP and/or JNDI endpoints. The vulnerable SpringBoot instance

processes such Log4j requests from an HTTP header input. To simulate the complete

exploitation chain, two containers are provisioned: a vulnerable SpringBoot and a JNDI

proxy container. The initial request, which includes a malicious JNDI payload in the

respective HTTP header, is sent manually. The vulnerability can be triggered when Log4j

attempts to process log messages containing malicious JNDI lookups. By sending a

carefully crafted log message to a vulnerable Log4j server, an attacker can exploit this

flaw to execute arbitrary code with the privileges of the application or service using Log4j.

This event can lead to a complete compromise of the affected system, enabling attackers

to gain unauthorized access, infiltrate sensitive data, or perform other malicious

activities. Log4Shell has been classified as a critical vulnerability due to its potential

impact and the widespread usage of the Log4j library in various Java-based applications

and systems.

The code snippet, Unsecure Log4j Handler Example, represents how the logging

statements will be processed when the vulnerable target receives an HTTP request with

the X-Api-Version header. The exploit string (JNDI-Payload, Figure 4 – Log4Shell RCE)

must be specifically crafted to leverage the Lookup capability, allowing remote object

referencing and execution during run-time [27]. As of writing, version 2.17 of Log4j

requires that specific system variables be updated (i.e.,log4j2.enableJndiLookup), to

enable the use of Lookup procedure in the JNDI protocol. Testing was performed using

version 2.14.1 of Log4j, which enables JNDI by default (Java Development Kit version

1.8.0). Log4Shell was classified as a critical vulnerability due to its potential impact and

the widespread usage of the Log4j library in various Java-based applications and

systems.

FCUP
EDR: Securing Low-level tracing for intrusion detection

12

Code 2 - Unsecure Log4j Handler Example

Network traffic heuristics applied during runtime by the EDR assume that the vulnerable

target is provisioned in an isolated context (i.e., Docker). Outbound traffic is thus

inexistent unless initiated by the Log4Shell exploit, due to the JNDI Lookup which will

initiate an HTTP GET request to fetch the malicious object reference. By applying

deterministic heuristics, the EDR can provide observability and interpolation capabilities.

3.1.1.1 Malicious Proxy

The JNDI/LDAP proxy server will be responsible for receiving requests triggered by the

JNDI Lookup in SpringBoot (Log4j) and promptly responding with malicious Java code

that the vulnerable target will execute.

FCUP
EDR: Securing Low-level tracing for intrusion detection

13

Figure 5 - JNDI:LDAP Lookup Overview

Figure 5 illustrates the procedure throughout this exemplary RCE attack. Detection

complexity arises from applying obfuscation in the JNDI lookup request (1), to evade

manual and/or static pattern matching; Attack scalability may also drastically shift

depending on the type of remote object reference and the intended exploit result.

3.1.2 LDAP Tracing

Figure 6 - LDAP Tracing Overview

For this attacker model, the goal of an arbitrary attacker is to leak information from a

vulnerable LDAP server, using ldapsearch [28], forcing the compromise of stored

information (red). As such, LDAP traffic is inspected by performing medium packet

inspection, expecting traffic as per RFC 2251 and analyzing for a subset of protocol

operations (protocolOp) to provide contextual information during runtime and other

relevant packet meta-data. LDAPS, the secure extension of LDAP, provides encrypted

traffic although was not considered for this scenario.

FCUP
EDR: Securing Low-level tracing for intrusion detection

14

4. ARCHITECTURE

Figure 7 - EDR Architecture

4.1. eBPF Maps

eBPF maps are the cornerstone for interpolation and tracing. They represent data

structures that allow shared data storage between user and kernel space. The use of

these maps allows the inherent eBPF programs to maintain shared information during

runtime.

Figure 8 - EDR eBPF Maps

Considering the EDR scope, all eBPF maps except EVENTS can be abstracted as a

data structure with 1024 entries that store key-value pairs of unsigned 32-bit integers

(i.e., HashMap of u32 value). The u32 data type represents non-negative integer values

ranging from 0 to 256 (23
2−1) (inclusive), and IP address decimal values fit within this

closure.

FCUP
EDR: Securing Low-level tracing for intrusion detection

15

Thus, by indexing HashMap with these values, the IP address can be encoded in a low-

level manner and maintained during run-time. eBPF data structures are required for two

possible reasons:

1. Maintaining state throughout the execution of eBPF-based programs.

2. Data traversal from different Protection Rings in the Linux Operating System,

such as from kernel-space to user-space and vice-versa, is a key function

that eBPF data structures enable.

- HITS: eBPF data structure used to count the number of occurrences of identified

IP addresses during run-time. The key and values are both u32. This structure

allows the EDR to abstract counter values for each key on a temporal basis,

allowing state recognition at the lowest level.

- LOOKUPS: Second counter-based eBPF data structure used to enumerate the

amount of JNDI lookups performed. With this information, the kernel space can

keep track of remote referencing of objects, allowing it to react accordingly to any

subsequent traffic at the lowest context level with the lowest possible overhead.

- BLOCK/ALLOW LIST: eBPF maps that control the interpolation capabilities from

the EDR. These structures are crucial for interpolation as they directly control the

EDR’s behavior, allowing incoming or outgoing traffic to be blocked or allowed

based on a unique IP address.

- EVENTS: This type of eBPF map is used exclusively for sending events with a

defined structure from kernel space to user space. It is referenced as a

PerfEventArray, an internal aya-rs eBPF data structure specialized in allowing

efficient data transversal from kernel space to user space [29].

4.2. Kernel-space

Kernel space is composed of two eBPF programs and the eBPF maps defined earlier.

The programs were devised so that the EDR can identify and analyze inbound and

outbound traffic, with the capability of cross-referencing traffic information irrespective of

the plane where it is being interpolated. Although subject to the constraint that our

vulnerable instance is isolated, as a Docker service, without any overlapping activity and

that these kernel-space programs are attached to the host and appropriate interface

where these services are running and expected to receive network traffic.

FCUP
EDR: Securing Low-level tracing for intrusion detection

16

Figure 9 - Kernelspace overview

Outgoing or egress traffic is picked up from the eXpress Data Path (XDP) program while

incoming or ingress traffic is traced by Traffic Control (TC). The eBPF maps make

intermediary data accessible to both programs. The EDR is capable of maintaining a

state, which allows it to interpolate traffic according to previously defined rulesets and

react preemptively (if set).

Figure 10 - Kernelspace analysis interface context

eBPF program hooking is performed by attaching the respective XDP program to the

Network Interface Card (NIC) driver level while the TC program is attached within the

Traffic Control Linux subsystem. For the defined attacker scenarios, targets were run as

micro-services and as such, eBPF programs were attached to the Docker bridge

network. This bridge network allows inter and intra communication from the micro-

services, so it was chosen to filter applicational traffic. Docker also uses Network

Namespaces, a virtualization of the network stack for the container(s), so that each has

an isolated network environment but is connected to the exterior via the bridge network

(i.e., docker0).

FCUP
EDR: Securing Low-level tracing for intrusion detection

17

Figure 11 – Kernel space analysis Docker context

The host will initially capture traffic sent to the applications, resulting in internal routing

to the application, sending traffic to the docker bridge network and then forwarding it to

the appropriate isolated network namespace.

4.2.1. Traffic Control

Figure 12 - TC Attachment Context

One of the main differences between TC and XDP BPF program types is the kernel

layers to which these programs are attached. In XDP, the BPF code runs at a layer

before the kernel’s networking stack processes a packet, resulting in better filtering

efficiency than TC programs. In contrast, TC BPF programs run at a layer within the

kernel’s networking stack. This means that code will be triggered during packet tracing

by the host’s networking stack, which requires different procedures to allocate packet

information and metadata tracing, leading to more overhead. The TC program filters all

inbound traffic to the application layer. Since applications are deployed as docker

FCUP
EDR: Securing Low-level tracing for intrusion detection

18

services, eBPF programs must be attached to consider this placement. As such, the TC

BPF program is placed at the egress plane relative to the docker network bridge, but

from the host’s perspective, it is perceived as an ingress filter, as illustrated in the last

section.

Regarding packet inspection, shallow packet inspection is conducted, inspecting packet

headers from an HTTP GET request. Packet bytes are analyzed by comparing them with

pre-defined byte sequences that are imported to stack memory and accessible during

runtime (i.e.: configuration parameter).

The figure bellow illustrates how the inspection is performed for HTTP GET requests with

the respective HTTP header (X-Api-Version).

Figure 13 - EDR TC Tracing

Packet information is indexed by byte (i) and using this indexation, byte comparison is

performed on a byte-per-byte basis. →∗ , represents the next and preceding iterations of

such index where check is the relevant checkpoints where meta-information can be

derived from the incoming data. For example, check 1 assumes the first three packet

bytes match: ‘G’, ‘E’, ‘T’, respectively (i.e.: →3).

offset+13 defines the explicit HTTP index where the logging statement will be inserted

for interpretation by the vulnerable SpringBoot instance. Offset is used as a constant

defining the HTTP header: X-Api-Version as referred in Attacker Model 1. Under these

assumptions, the TC program is able inspect for JNDI connection strings and extract

meta-information at check 3 & 4.

FCUP
EDR: Securing Low-level tracing for intrusion detection

19

4.2.2. eXpress Data Path

Figure 14 - XDP Attachment Context

The EDR’s XDP BPF program is attached to the ingress networking data path for the

host’s Docker network bridge (virtual), as XDP programs are natively attachable only at

the ingress plane. Although from the host’s perspective, this program functions as an

egress filter, tracing outbound traffic from the Docker services (i.e., LDAP server,

Spring/Log4j Logger). This type of eBPF program operates at the earliest possible point

in the software stack, specifically before any packet processing occurs within the kernel's

networking stack. In contrast to TC BPF program types, XDP programs can only be

triggered at ingress points in the networking data path as an independent program

running apart from the host’s networking processing stack.

This BPF program is used in tandem with TC to complete the EDR’s packet filtering

stack. It analyzes the host’s outbound traffic based on state information populated and

shared between both programs at runtime via eBPF maps. Due to its early positioning in

the data path, XDP ensures higher efficiency for packet inspection, making it suitable for

analyzing TCP/HTTP or LDAP traffic and/or applying extensive pattern-matching logic.

The analysis of LDAP traffic is implemented using a straightforward approach to traffic

tracing. Unencrypted LDAP traffic is considered throughout as the EDR employs deep

packet inspection techniques to verify packet data and extract relevant parameters for

analysis as well as meta-data from the packet and/or flow.

FCUP
EDR: Securing Low-level tracing for intrusion detection

20

Figure 15 - XDP Tracing

Starting with the “Message ID” LDAP parameter, this parameter correlates requests and

responses. In this simplified approach, the EDR considers values from `0 .. 255` (u8),

assuming no more than 255 requests will be sent. This is raised as a limitation, but

alternatives can be efficiently introduced to trace the correct ID for more than 255

requests. For instance, knowing that the protocol operation is the next valid byte, we can

cycle through the packet bytes starting from the Message ID offset until a valid Protocol

Operation is identified.

FCUP
EDR: Securing Low-level tracing for intrusion detection

21

Regarding the "Protocol Operation" parameter, this parameter is traced by eBPF to

detect outbound results and/or responses from the LDAP server (Docker service).

Outbound HTTP traffic analysis also complements the TC traffic stack by inspecting for

outbound HTTP traffic that may be used to correlate with inspected traffic from TC.

The EDR maintains eBPF maps throughout execution; both TC and XDP can construct

state together and infer network operations based on the state. If a TC program detects

a JNDI Lookup Request being sent to the logger, XDP may infer that the proceeding

HTTP GET request is relative to the JNDI Lookup.

Figure 16 - XDP Tracing Timestamped

4.2.3. XDP  TC

When used in tandem, XDP and TC programs can maintain a reference to a portion of

the network scope and intervene at the lowest level. State information is maintained

using the HITS and LOOKUPS eBPF map data structures. The HITS map maintains a

counter for each occurrence of an IP address (HashMap key), while the LOOKUPS map

increments a counter with the respective packet source IP address as the key (i.e., Single

use-case).

The LOOKUPS map maintains pattern-matching information based on the received

packet data. If a payload is detected, the LOOKUPS eBPF map increments a counter

with the application IP address as the key, that is the respective packet destination

address.

The HITS map allows for an approach to detecting unexpected outgoing traffic. From

XDP (egress filter), unexpected outgoing traffic is identified when the destination address

has fewer occurrences than the source address, which, in this case, is the application's

IP address. Considering this scenario, if the LOOKUPS map contains a recently updated

counter value for the respective source address, then both heuristics determine that the

FCUP
EDR: Securing Low-level tracing for intrusion detection

22

outgoing traffic is not only unexpected but malicious, from which eBPF can either

interpolate and/or alert depending on the defined configuration.

Deterministic heuristics were built around these principles and are represented as

follows:

y, Application IP Address

x, Arbitrary IP Address

(y → x), Packet flow from y (source) to x (destination).

As to simplify heuristic designing the following principle is enforced:

(1) If (y → x) at t=1, then it is implicit () that there was a previously occurring reverse

packet flow, (x → y) at t=0.

(y → x)  (x → y)

Based on this, the following representation can also be abstracted:

(y → x)  C(y)++ & C(x)++

where C(z) is a counter operation of the number of occurrences for a given IP address

z, where ‘++’ is equivalent to C(z) = C(z)+1.

Based on this representation, heuristics can be applied to deliberate when packets

should be analyzed. If the number of occurrences from an arbitrary address is less than

the number of occurrences for the application address, then we can conclude that the

traffic flow is unexpected.

Based on these assumptions, we can then conclude:

C(x) < C(y)  ⎯ (x → y)

Suppose the number of occurrences from an arbitrary address is less than the number

for the application address. In that case, it is assumed no previous data flow from the

source address has been registered to the application that the EDR is safeguarding (i.e.:

“⎯ (x → y)”) and consequently this traffic is labeled as unexpected, assuming (1).

In this context, these programs were strategically placed to capture network contexts.

However, it is derived from the need to interpolate and analyse deterministic network

FCUP
EDR: Securing Low-level tracing for intrusion detection

23

patterns at the lowest level (data packets). The most predominant example is the

procedure-based actions behind a JNDI Lookup when applied to a Log4J logger. These

actions can be represented as sequential operations that occur due to an initial trigger

operation, which can be abstracted to a user request sent to the logging system to fetch

a remote object (i.e., Log4Shell RCE). A simpler and more convenient example of a

deterministic network pattern is the data flow/operations behind the Internet Control

Message Protocol echo procedure ping command.

An echo procedure (i.e.: Ping Command [30]) is only completed when an explicit echo-

request packet corresponds with an echo-reply. Thus, we can determine an underlying

deterministic pattern: an echo reply will only occur if an echo request occurs. As such,

operations are not equivalent and, in fact, induce implications. The latter or the former

doesn’t imply the procedure (X), but the conjuncture does.

Figure 17 - Ping Example

The operations follow a deterministic sequential flow in a JNDI Lookup procedure behind

an RCE. Each operation leads to the next, where the conjuncture of the operations

represents the whole exploit.

However, there is an inherent difficulty in asserting realistic deterministic patterns when

a high load of information is being analyzed, or operations are complex. Patterns were

FCUP
EDR: Securing Low-level tracing for intrusion detection

24

relativized to the lowest level, assuming a deterministic nature. Identifying patterns is

also predominantly complex when overlap or duplication of traffic occurs, as specific

protocols, such as UDP, might not deliver consistent and ordered packets. Encrypted

traffic also narrows the packet inspection abilities that such eBPF programs might

perform. Packet meta-data can be used to differentiate and apply low-level triage of

network traffic.

4.3. User-space

Figure 18 – User-space

User space is where the EDR can provision the necessary environment to build and run

the needed eBPF programs as well as initiate the TLS MQ producer, which will

continuously forward eBPF events to a pre-defined message queue. The respective MQ

consumer will then complete the TLS connection and continuously receive messages for

post-processing. In practice, the EDR’s kernel-space functionalities are built on the

no_std Rust environment [32]. This environment is limited to primitive data types and

macros imported from the core crate, which are used to import the bulk configuration

parameters to kernel space. Data is allocated to the stack using static file inclusion. Thus,

any modifications to this data from user-space after the eBPF programs have been

attached will not be reflected. Configuration modifications after the EDR's initialization

require re-compilation and attachment.

FCUP
EDR: Securing Low-level tracing for intrusion detection

25

User space is also a predominant part of the EDR since it transforms and packages raw

events from kernel space. Events are represented using a typical structure from both

protection rings, EventLog:

Code 3 - EventLog Definition

From this structure, we are able to extract event information relative to the type

(Inbound/Outbound), the route the packet is transversing (Source/Destination IP), the

action assumed (PASS or DROP) and a custom data field referred to as levels (event

verbosity) which we use as a one-hot encoded variable to label the event based on the

type (i.e.: inbound/outbound HTTP GET request). From these data fields, the EDR can

transform raw u32 values as anomaly detector features and extract network context in

the form of operational messages piped to the Wazuh.

The eBPF programs are the EDR’s best-effort classifier, classifying network operations

as events or alarms (PASS or DROP) based on user-defined rules. While the anomaly

detector (feed-forward neural network) is the second-step classifier receiving features

from identified events and classifying them as abnormal or usual. Rsyslog, Rocket-fast

System Logger, is the intermediary between the EDR and Wazuh. This framework

provides a wrapper over the host operating system that allows for aggregating

application and host-level logs, logging them locally, as well as forwarding them to the

defined Wazuh instance. We can thus maintain the local and remote context of the logs

produced and the host's environment.

FCUP
EDR: Securing Low-level tracing for intrusion detection

26

Figure 19 - Userspace / Confidential Computing Operation (SGX)

During run-time, the EDR deals with high volatility when analyzing network events. As

such, RabbitMQ was leveraged to accommodate secure asynchronous transferals of

data, allowing computational capabilities to be distributed according to the proposed

producer/consumer model with a tolerable amount of latency as events or alarms are

and must be time sensitive.

Figure 19 illustrates the defined modularity, with workloads distributed across differential

computing operations. It assumes a topology where Anomaly Detection (A.D.) is

performed either locally, that is, as soon as the eBPF event is triaged and processed, or

remotely from a confidential computing unit (i.e., Intel SGX enclave), with the appropriate

MQ consumer stub. Both approaches were considered for distinct purpose and assumed

that along with the system and EDR logs, the appropriate prediction results would be

produced (Local A.D.) and logged internally using Rsyslog and consequently forwarded

to Wazuh or produced remotely and then forwarded to Wazuh (Remote A.D.).

Local A.D. was mainly used for testing purposes as it provided a quick and low-latency

approach. Remote A.D. was favorable from a security perspective since the anomaly

detection model is invocated and maintained as a sub-set of the enclave, leveraging its

confidential computing capabilities. The model is initialized, trained and invocated

explicitly within the SGX enclave using rusty-machine-sgx, Rust Crate [25].

In order not to skew results provided by the neural network model and assume

conformity, for both local and remote A.D. deployments, the same model (and

configuration parameters) were considered – Binary Classification Neural Network with

FCUP
EDR: Securing Low-level tracing for intrusion detection

27

the following layers: [7,11,3,1], pre-trained with a sample dataset (11x7) from Attacker

Model 1 sample run.

For the EDR, time is of the essence. Identification of attacks and response rates must

be swift and precise since we are dealing with real-time events. Because of this, the EDR

requires two primary requisites: to identify and report network events or alarms while

they are occurring and to be able to provide a basis for the validity of the interpolation

and classification of an event. This means that Wazuh Manager should be able possible

to trace-back and validate the EDR’s behaviour.

One of the main requisites of the anomaly detector model is to be able to continuously

predict models and "learn" from the network context. This is achieved by applying the

following pseudo-code:

Pred >= 0.09

 then: Anomaly

else: Append Event to dataset

From the A.D. unit (i.e., local or remote), events with prediction results above or equal to

the static threshold are classified as anomalies, or the corresponding event is appended

to the dataset. As network traffic changes overtime, patterns are expected to change,

and there will be a rapid distribution of data. Thus, our model is expected to be highly

volatile from the start.

When writing the thesis, the training dataset introduced to the model was relative to the

Log4Shell Vulnerability (Attack Scenario). As such, the dataset includes various

iterations of the Log4Shell attack to a vulnerable Spring Boot web application hosted in

Docker. The dataset consists of 11 rows and 7 columns. (11x7 matrix).

4.3.1 Feature extraction

Feature extraction occurs from the log message (event) received from the EDR’s kernel

space. From the event, the EDR extracts 7 features: Two IPv4 addresses, Traffic data

flow type (XDP vs TC), eBPF action, transport layer protocol type, application layer

protocol and the application operation (identified by eBPF).

Feature extraction requires normalization (scaling) and pre-processing steps to encode

categorical data into a numerical format. This type of encoding is based on one-hot

encoding, a technique used primarily on data representation and pre-processing, where

FCUP
EDR: Securing Low-level tracing for intrusion detection

28

categorical data is represented as a matrix of binary values (0s and 1s). Although

features aren’t represented as a matrix of binary values, they are scaled to the numerical

equivalent. Also referred to as binary scaling, labels are converted to an equivalent

representation as a matrix of binary values and from there, unique numerical values are

calculated for each label.

Figure 20 - Feature Extraction

FCUP
EDR: Securing Low-level tracing for intrusion detection

29

For the case of only two labels, the encoded values can be abstracted to boolean

conditionals. Considering Figure 20, certain encoding schemes can be abstracted to a

simple boolean attribution.

Multi-label (i.e., > 2 labels) follows the same encoding schema without the binary

normalisation abstraction. Each categorical label is cast as a matrix of binary values,

then scaled to the numerical equivalent and, lastly, are normalised so that all follow the

same numeric scale representation (i.e.: Values starting from “0”).

IPv4 addresses are the sole features that are pre-processed differently. These features

are represented as values between 0.0 — 1.0. They are calculated by taking the four

octets of the IP address, scaling each octet to a value between the same range and then

combining them with the appropriate weights (multiplier, according to index (i)) to

produce a final value between 0.0 — 1.0. In this instance, the multiplier is crucial to

achieving uniform scaling, without any additional scaling (i.e., the presence of the

multiplier). Each octet would contribute equally to the final value, meaning that the value

would vary according to the proportion of magnitude of the octets and would not fall under

the desired uniform range ([0.0-1.0]) — A “larger” octet would have a more substantial

impact over the final value in comparison to “smaller” octets. An important nuance is that

octets vary in importance according to their position in the address due to its hierarchical

addressing (Network and Host portions of the address). The multiplier needs to reflect

this property in the final scaled value. Based on the addressing hierarchy of IPv4, the

leftmost octets (𝑂𝑖) represent the network portion. These will have the least significant

impact on the final scaled value. In contrast, the rightmost octets (𝑂𝑖′) represents the

host portion and will have the most significant impact over the final result. This occurs

since, fundamentally, Host information is valued over Network information — It is more

likely to have significant unique hosts rather than networks.

[INFO EDR] 172.17.0.1 --> 172.17.0.2 - PASS - LOG:

[FEATURES] saddr:0.003922626083972407 daddr:0.007844194711423388

action_scale:0 traffic_scale:1 transport:0 application:0 op:0

[INFO EDR] 172.17.0.1 --> 172.17.0.2 - PASS - LOG: ${jndi:ldap match;

[FEATURES] saddr:0.003922626083972407 daddr:0.007844194711423388

action_scale:0 traffic_scale:1 transport:0 application:0 op:6

FCUP
EDR: Securing Low-level tracing for intrusion detection

30

[INFO EDR] 172.17.0.2 --> 192.168.1.54 - PASS - LOG: TCP Traffic;

[FEATURES] saddr:0.007844194711423388 daddr:0.21179012223785998

action_scale:0 traffic_scale:0 transport:1 application:0 op:0

[INFO EDR] 172.17.0.2 --> 192.168.1.54 - DROP - LOG: TCP Traffic;

HTTP GET;

[FEATURES] saddr:0.007844194711423388 daddr:0.21179012223785998

action_scale:2 traffic_scale:0 transport:1 application:1 op:1

The initial packets refer to the cURL operation initiating the remote JNDI Lookup. The

last two requests are outgoing traffic from the vulnerable web application to the attacker.

By leveraging the TC eBPF shallow packet inspection capabilities, the connection string

is detected and EDR pre-emptively drops the packet(s), disallowing the JNDI Lookup to

complete.

4.3.2 Anomaly Detection

The anomaly detection model is based on a feed-forward neural network, that is, a uni-

directional model flowing input features forward, returning a single prediction result in the

form of a binary classification. Classification occurs implicitly based on the prediction

score and the overall network context being analysed. A static threshold (0.09) was

considered and used throughout to be able to classify network events as normal or ab-

normal (PoC). In an ideal context with continuous prediction and training, this threshold

shouldn't be static as it depends highly on the nature of the network context and will shift

with the amount of processed and trained data (Limitation and Future Work).

In terms of the parameters used to configure the model, these parameters were

fashioned according to the underlying classification task -- binary classification. In terms

of the criterion, the loss function used was the Binary Cross-Entropy Criterion with L2

Regularization. The model's layout was formulated in the same manner throughout

testing but with varying hidden layers.

From the EDR's eBPF stack, a total of 7 features are extracted from a network event

(eBPF Tracing) and fed to the model, resulting in the input layer. Since the model must

be able to return a single classification result, a single node for the output layer is

considered. The model's variability and complexity come from the hidden layers. Initially,

FCUP
EDR: Securing Low-level tracing for intrusion detection

31

a larger hidden layer was considered with distributed hidden nodes (i.e.: [7,5,11,3,1] and

[7,11,5,3,1]).

- Input Layer: 7 Input nodes - One for each extracted feature.

- First Hidden Layer: 11 Hidden nodes

- Second Hidden Layer: 3 Hidden nodes - Categorizing the compilation of features

into three sub-groups: "Normal", "Anomalous", "Unknown".

- Output Layer: 1 Output Node - Prediction (Binary) Result

FCUP
EDR: Securing Low-level tracing for intrusion detection

32

5. MODUS OPERANDI

Source code deployment is analogous for all EDR components, including Intel SGX

native applications. Source code was conveniently arranged to allow agile deployment

with an emphasis on modularity.

Figure 21 - Code Structure

Code arrangements are identical despite both environments being dependent on

different standard environments in Rust. The native standard environment (i.e., std) in

Rust is used by the producer, from which most Rust crates are derived. On the other

hand, SGX environments are dependent on the standard environment imported by the

SDK provided by the Incubator Teaclave SGX project (i.e., sgx_tstd). The consumer will

include ‘/sgx/’ where the necessary build scripts are stored and the SDK from Rust (SGX

code). Each (source-code) directory holds the relevant source code and a build script

(i.e., build.sh) used for building the application-level code.

Docker is the primary tool used for provisioning the images ready with Rust and all the

code following the directory structure above. Dependencies are met to run a

simultaneous eBPF and SGX development environment under the Linux Ubuntu 20.04

operating system. Relevant dependencies in these images are the necessary apt

dependencies (to build the application code) and the bpf-linker tool to support BPF map

verification, compilation and linkage.

Wazuh configuration and initialization were officiated manually for relevant testing and

analysis. Complete configuration of Wazuh is upheld once a Wazuh Agent is configured

to include system logs from the local Rsyslog framework or remote system logs are

supported by the Wazuh Manager. The former requires enrollment of the Wazuh Agent

FCUP
EDR: Securing Low-level tracing for intrusion detection

33

with the relevant Manager. While the latter requires configuration to be updated to

support and initialize a system log listener (requires port specification). Once this is in

place, the explicit Wazuh Manager requires custom Decoders and Rules to be integrated

to the triage EDR log messages. Other log messages, such as OS system logs captured

by the EDR, will automatically be triaged as the syslog protocol is integrated natively in

Wazuh.

The last step before running the EDR is adapting its configuration YAML file according

to the appropriate context. The EDR depends on two configuration parameters, which

control the interpolation mechanisms offered by the respective eBPF programs. These

parameters are responsible for controlling the EDR’s behavior throughout runtime.

Figure 22 - Configuration Parameter

Logger Info is relative to the Log4Shell exploit from first attacker model used to

reference the HTTP header name where the arbitrary payloads will be placed. The EDR

Ruleset corresponds to the configuration parameter used to define which type of traffic

should be blocked (inbound and outbound), based on the condition (1/2). Conditions

were used to test the distinctive security postures.

As part of the configuration, RabbitMQ TLS certificates, corresponding private keys and

user credentials are generated to be able to access the GUI generated by the RabbitMQ

service. From a security standpoint, in terms of infrastructure, each component of the

EDR is built in an isolated containerized manner and managed as a micro-service.

Message queue communication is also secured using the TLS integration mentioned.

FCUP
EDR: Securing Low-level tracing for intrusion detection

34

6. TESTING AND ANALYSIS

6.1. Log4Shell

Figure 23 - Log4Shell Overview

Several components and procedures need to be present in order to replicate the

Log4Shell vulnerability. Logically, the EDR will be safeguarding the SpringBoot web

application, which is vulnerable to CVE-2021-44228 and running the Java logging library

log4j2 (Version 2). This web application can be abstracted as a logging instance whose

sole purpose is to receive and extract logs from the X-Api-Version HTTP Header without

sanitization before processing the log string.

Attacker operations reside in using a malicious JNDI/LDAP proxy and sending the

malicious logging request to the application framework. The malicious proxy is the central

component responsible for crafting arbitrary Java code that will be requested from the

logging framework and consequently loaded and executed. Since no sanitization occurs

and due to the nature of object addressing behind the Log4j Lookup procedure, the

attacker to craft arbitrary connection string requests to any desired endpoint, allowing for

RCE.

FCUP
EDR: Securing Low-level tracing for intrusion detection

35

6.1.1. Rogue JNDI/LDAP Application

The options for the JNDI Exploit JAR file are extensive. Thus they were pruned for brevity

since only a restricted number of payloads will be considered for this attack scenario. In

this scenario we will only consider basic queries.

Figure 24 - Malicious proxy

The simplest form of the payload is a connection string with an arbitrary Base64 encoded

command. As such, this was the standard structure considered for the payloads, with

varying connection string (obfuscation techniques) and encoded commands. Only two

commands were considered: touch /tmp/pwned and a simple reverse shell procedure as

illustrated below.

Figure 25 - Reverse Shell JNDI Payload

6.1.2. Attack Vectors

${jndi:ldap://your-ip:1389/Basic/Command/Base64/dG91Y2ggL3RtcC9wd25lZAo=}

The simplest type of payload is a base64 encoded command, which is encoded into the

payload to reduce the possibility of detection. As with all JNDI lookup procedures, this

payload will be sent to a vulnerable SpringBoot instance running log4j which will process

the payload and request the defined remote procedure. There may be other variations

FCUP
EDR: Securing Low-level tracing for intrusion detection

36

when it comes to lookup procedures. It is also possible to use remote method invocation

methods instead of the JNDI protocol.

Figure 26 – Payload Analysis

6.1.3. Command Interpolations

Figure 27 - Exploit Detection 1

Figure 28 - Exploit Detection 2

The figures above showcase the EDR's interpolation to the attack and the anomaly

detector classification to possibly analogous network traffic, considering the features

extracted from the eBPF tracing stack. From both examples, the EDR's behavior is

distinct when faced with obfuscation in the payload. Figure 27 considered a simple

connection string without obfuscation, while Figure 28 considers payload obfuscation. In

the second example, the EDR is unable to pattern-match the lookup procedure and, as

such, doesn't proceed to block the malicious request sent from the logger. In Figure 27,

the whole connection string is matched and as such, the EDR can interpolate the

malicious request (or the logger's reaction to it). Regarding the anomaly detector, this

model was previously trained with the 11x7 dataset, as such it is robust to the whole

connection string and sensitive to variations. The dataset constitutes 11 malicious

requests sent to the logger with the same payload variations for each request (‘jndi:ldap’).

FCUP
EDR: Securing Low-level tracing for intrusion detection

37

Model adaptability and performance are highly adaptable depending on the disparity of

data provided by the dataset, which will be used to pre-train the model.

6.1.4. Command Variants

Figure 29 - Command Variants

From Figure 29, x is the sequence of "ndi" or "ldap" characters sequentially. Each run

was repeated consecutively, considering that the dataset is the same for each. The

anomaly detector is more robust on explicit connection strings. For more complex

payloads there are cases where the model initially classifies the payloads as anomalies

but converges after consecutive attempts.

When it comes to bypassing the EDR, the lookup mechanism procedure (i.e.: (JNDI,

RMI)) is the main element of the payload that was considered for obfuscation. In this

figure, (+) represents the regex recursive symbol, "One or more". Since the eBPF tracing

stack is based mostly on shallow and deep packet inspection pattern matching, complex

payload obfuscation techniques can bypass run-time interpolation unless stronger

heuristics are applied (limitation / future work).

FCUP
EDR: Securing Low-level tracing for intrusion detection

38

Figure 30 - Exploit Detection cURL

This sample run considers 3 logging requests sent to the vulnerable application. As

expected, the EDR and the model can preemptively identify the attack during run-time,

but as referred to above, interpolation might occur with some exceptions due to payload

obfuscation (cURL1 and cURL2). One noticeable consideration is the model’s adaption

to the network behavior. Over time, with consecutive requests it is expected that the

model converges, although since the Log4Shell attack procedures require the logger to

send outbound traffic to a remote endpoint, this is still tracked and classified from the

model (cURL2 -- HTTP Response, with the rogue JNDI in place the logger would

explicitly send a HTTP GET request).

6.1.5. Reporting

With Wazuh, logs can be analyzed to trace back the EDR's execution as well as

administer the hosted applications, if needed. Wazuh data can also be extended for

reporting, where graphs and figures can be created from the logs. Since Rsyslog is used

to pipe the logs from the EDR to the Wazuh instance, by default Rsyslog will send all the

other system logs from the EDR's host. This is ideal since host system logs can be cross-

referenced with EDR logs depending on the application and attack context.

FCUP
EDR: Securing Low-level tracing for intrusion detection

39

Figure 31 - Reporting

Wazuh also allows for various types of reporting, depending on the type of deployment:

single-node or multi-node. Figure 31 illustrates a count distribution of the number of logs

received by this instance, according to pre-defined default labels: Top MITRE

ATT&CKS. With Wazuh, administrators can create their own decoders and rules, so that

custom logs can be triaged and showcased as illustrated in these figures.

Figure 32 - Logs cross-reference

From Figure 32 we can distribute and cross-reference the number of EDR logs (5) over

the number of anomaly detector logs (4). For this sample run, both log types are highly

correlated resulting in the overlapping curves, as for each EDR log (event), an anomaly

detection prediction will also be sent as a distinct event.

FCUP
EDR: Securing Low-level tracing for intrusion detection

40

6.2. LDAP

Figure 33 - LDAP Overview

The EDR was also formulated for observability purposes, such as enabling the trace of

low-level information and allowing a basis for customizable logic. Overhead is expected

and will grow with the increased complexity of packet inspection and pattern-matching

capabilities. Pattern matching in eBPF is done at the packet level so more granularity

implies higher latency. Nonetheless for this scenario, heuristics were applied for

observability purposes. Essentially, they inspect network traffic packets based on LDAP

operations and other meta-data as per the LDAPv3 Wire Protocol.

One of the sub-goals from this scenario was to assess and validate whether the

proposed tool was useful for inspecting and interpolating explicit LDAP operations to an

arbitrary server to preemptively detect malicious activities such as information-gathering

strategies.

It was considered that the model is trained with an arbitrary dataset with no previous

LDAP operations. Initially, the model returns similar classification results for all LDAP

traffic, such as abnormal traffic. This can trivially be concluded because the model is

trained with data that has a high disparity compared to the features being received. It is

only after a finite number of iterations that the model gradually classifies data as

expected since it is continuously trained with the data it receives.

FCUP
EDR: Securing Low-level tracing for intrusion detection

41

Figure 34 - LDAP Run

Following the timestamps and Log IDs, all LDAP response operations are tracked and

classified. However, since the feed-forward neural network considers a compilation of 7

input features, with the increased occurrence of these operations as well as the increase

of traffic flow between the source and destination address, the anomaly detection model

converges and “learns” from the current network activity as desired.

Although this convergence from the model isn’t definitive and final, as expected, after

convergence, LDAP traffic will still be classified as abnormal since a static threshold is

used for classification (i.e.: >= 0.9), and the initial training dataset has no LDAP

operations. In this scenario, the model imposes a high sensitivity when classifying traffic,

which is initially expected since the trained data holds no relevance to this context.

Figure 35 - LDAP Detection and Prediction

FCUP
EDR: Securing Low-level tracing for intrusion detection

42

Figure 35 considers the same distribution of commands but without model's classification

intervention. This figure showcases how the EDR can trace LDAP activity and identify

and perceive LDAP operations from simple heuristics (data packet size parameter).

FCUP
EDR: Securing Low-level tracing for intrusion detection

43

7. CONCLUSION

In conclusion, throughout this thesis, we proposed a proof-of-concept tool as a

foundational building block for EDR solutions tailored to safeguard arbitrary local

environments. The source-code developed and used throughout this thesis is referenced

as edrc2u under the branch: thesis-poc hosted in GitHub [5].

Analysis and verification of the tool's behavior and results were performed using both

attacker scenarios, as expressed in the Motivation chapter. With the proposed tool,

verifying the expressed detection and interpolation capabilities was possible, considering

the "isolated" network assumptions and the appropriate configuration parameters. As per

the Testing and Analysis chapter, the EDR was successfully positioned in both contexts

as a central system for detecting, reporting, and interpolating low-level operations

occurring under the hood.

7.1. Limitations and Future Work

Current limitations are enumerated with mitigation proposals for future work

improvements to the EDR. From a security perspective, eBPF is a critical component as

it reflects the logic from the heuristics being applied during run-time, which is essentially

the EDR’s source of truth. This essentially results in Single Point-Of-Failure issues,

which, in this instance, are critical to the integrity and authenticity of events and alarms

produced by the EDR. From the highlighted issues, the following mitigations are

proposed, assuming attacks are directed to the eBPF boundary:

1. If eBPF reaches an error state or is assumed to be breached, events and/or

alarms may be tampered with internally (eBPF maps), or new eBPF programs

may be generated and attached (i.e., eBPF requires System Administrator

capabilities in the Linux OS).

Candidate Solution: A multi-producer strategy can be implemented to distribute

eBPF tracing stacks (i.e., XDP/TC) across multiple nodes to allow the EDR to be

extendable to support fault-tolerant strategies. eBPF-based LSM capabilities can

also be developed to enforce isolated environments with regard to system

capabilities.

FCUP
EDR: Securing Low-level tracing for intrusion detection

44

2. Currently, A.D. is performed continuously, resulting in the internal dataset

growing indefinitely. Freshness in the dataset is crucial since it is the only way

the EDR can adapt to evolving network traffic patterns.

Candidate Solution: Apply transformations and procedures to continuously

prune the dataset and remove potential noise, although this would require domain

context information to preemptively classify what explicit traffic is undesirable.

FCUP
EDR: Securing Low-level tracing for intrusion detection

45

REFERENCES

[1] Wazuh, “The Open Source Security Platform.” Accessed: May 10, 2024. [Online].

Available: https://wazuh.com/

[2] OSSEC, “OSSEC.” Accessed: Jul. 05, 2024. [Online]. Available:

https://www.ossec.net/

[3] CrowdStrike, “Falcon Insight XDR.” Accessed: Jun. 01, 2024. [Online]. Available:

https://www.crowdstrike.com/platform/endpoint-security/

[4] SentinelOne, “Singularity.” Accessed: Jun. 01, 2024. [Online]. Available:

https://www.sentinelone.com/surfaces/endpoint/

[5] Guilherme Pereira, “edrc2,” EDR Proof-of-Concept. Accessed: Jul. 31, 2024.

[Online]. Available: https://github.com/WillGAndre/edrc2u/tree/thesis-poc

[6] Linux Kernel Community, “eBPF Program Types,” eBPF Program Types.

Accessed: Jul. 01, 2024. [Online]. Available:

https://docs.kernel.org/bpf/libbpf/program_types.html

[7] Michael Kerrisk, “tc-bpf manual page,” The Linux Programming Interface: tc-bpf.

Accessed: Jun. 10, 2024. [Online]. Available: https://man7.org/linux/man-

pages/man8/tc-bpf.8.html

[8] Cilium, “Tetragon: eBPF-based Security Observability and Runtime

Enforcement.” Accessed: May 10, 2024. [Online]. Available:

https://tetragon.cilium.io/

[9] A. Nakryiko, “BPF Portability and CO-RE.” Accessed: Jul. 03, 2024. [Online].

Available: https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-

portability-and-co-re.html

[10] A. Nakryiko, “Enhancing the Linux kernel with BTF type information.” Accessed:

Jul. 03, 2024. [Online]. Available:

https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html

[11] aya-rs, “aya-rs Homepage.” Accessed: Jun. 29, 2024. [Online]. Available:

https://aya-rs.dev/

[12] aya-rs, “aya-tool: Rust Bindings Generator.” Accessed: Jun. 29, 2024. [Online].

Available: https://aya-rs.dev/book/aya/aya-tool/

FCUP
EDR: Securing Low-level tracing for intrusion detection

46

[13] Intel, “Overview of Intel SGX Enclave.” Accessed: May 10, 2024. [Online].

Available:

https://www.intel.com/content/dam/develop/external/us/en/documents/overview-

of-intel-sgx-enclave-637284.pdf

[14] Y. Lindell, “The Security of Intel SGX for Key Protection and Data Privacy

Applications,” Aug. 2018. Accessed: Jul. 05, 2024. [Online]. Available:

https://cdn2.hubspot.net/hubfs/1761386/security-of-intelsgx-key-protection-data-

privacy-apps.pdf

[15] Apache, “Apache Teaclave Homepage,” Apache Incubator Teaclave Project.

Accessed: Jul. 05, 2024. [Online]. Available: https://teaclave.apache.org/

[16] V. Costan and S. Devadas, “Intel SGX Explained”, Accessed: May 16, 2024.

[Online]. Available: https://eprint.iacr.org/2016/086

[17] Apache, “Incubator Teaclave SGX SDK.” Accessed: Jul. 05, 2024. [Online].

Available: https://github.com/apache/incubator-teaclave-sgx-sdk

[18] E. Rescorla and T. Dierks, “The Transport Layer Security (TLS) Protocol.”

Accessed: Jul. 05, 2024. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc5246

[19] RabbitMQ, “RabbitMQ.” Accessed: Jul. 05, 2024. [Online]. Available:

https://www.rabbitmq.com/

[20] C. Lonvick, “The BSD syslog Protocol,” The BSD syslog Protocol. Accessed: Jul.

05, 2024. [Online]. Available: https://www.rfc-editor.org/rfc/rfc3164.html

[21] Adiscon GmbH, “Rocket-fast system for log processing.” Accessed: Jul. 05, 2024.

[Online]. Available: https://www.rsyslog.com/

[22] Adiscon GmbH, “Rsyslog TLS Tutorial.” Accessed: Jul. 05, 2024. [Online].

Available: https://www.rsyslog.com/doc/tutorials/tls.html

[23] VMWare Tanzu, “SpringBoot.” Accessed: Jul. 01, 2024. [Online]. Available:

https://spring.io/projects/spring-boot

[24] OpenLDAP Foundation, “OpenLDAP.” Accessed: Jul. 05, 2024. [Online].

Available: https://www.openldap.org/

[25] Mesalock-linux, “rusty-machine-sgx,” Rust Crate. Accessed: Jul. 01, 2024.

[Online]. Available: https://github.com/mesalock-linux/rusty-machine-sgx

FCUP
EDR: Securing Low-level tracing for intrusion detection

47

[26] C. T. Free Wortley Forrest Allison, “Log4Shell: RCE 0-day exploit found in log4j,

a popular Java logging package.” Accessed: May 10, 2024. [Online]. Available:

https://www.lunasec.io/docs/blog/log4j-zero-day/

[27] Apache, “Log4j Lookups.” Accessed: May 10, 2024. [Online]. Available:

https://logging.apache.org/log4j/2.x/manual/lookups.html

[28] OpenLDAP, “LDAP search tool manual page.” Accessed: Jul. 01, 2024. [Online].

Available:

https://www.openldap.org/software//man.cgi?query=ldapsearch&apropos=0&sek

tion=1

[29] aya-rs, “aya-rs Samplecode.” Accessed: Jul. 01, 2024. [Online]. Available:

https://github.com/aya-rs/book/tree/main/examples

[30] J. Postel, “INTERNET CONTROL MESSAGE PROTOCOL”, Accessed: Jul. 05,

2024. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc792

	List of Code Samples
	List of Figures
	List of Abbreviations
	List of Definitions
	1. INTRODUCTION
	2. BACKGROUND
	2.1. aya-rs
	2.2. Intel SGX
	2.3. Infrastructure
	2.4. Logging
	2.5. Vulnerable Targets
	2.6. Anomaly Detection

	3. MOTIVATION
	3.1. Attacker Model

	4. ARCHITECTURE
	4.1. eBPF Maps
	4.2. Kernel-space
	4.3. User-space

	5. MODUS OPERANDI
	6. TESTING AND ANALYSIS
	6.1. Log4Shell
	6.1.2. Attack Vectors
	6.1.3. Command Interpolations
	6.1.4. Command Variants
	6.1.5. Reporting
	6.2. LDAP

	7. CONCLUSION
	7.1. Limitations and Future Work

	REFERENCES

