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Resumo 

A constante monitorização e recolha de dados nas infraestruturas modernas para 

deteção, proteção e análise do fluxo de dados em tempo real é um aspeto crucial dos 

sistemas de sistemas de deteção e resposta (EDR). Esta tese apresenta uma 

ferramenta de rastreio de baixo nível como prova de conceito para uma solução EDR 

flexível e personalizável. Esta solução, baseada em eBPF e na deteção de anomalias 

com a utilização de redes neuronais, foi concebida para se adaptar às necessidades 

específicas de diferentes infraestruturas. O seu objetivo é extrair e analisar o contexto 

da rede a partir de operações de baixo nível e aplicar heurísticas de filtragem de pacotes 

e de estado para a deteção contínua de padrões de rede em cargas de trabalho 

distribuídas, utilizando o Intel SGX e interpolando o tráfego quando certas condições 

previamente definidas são cumpridas. Ao concentrar-se em dois contextos de 

exploração distintos, o EDR posiciona-se como uma unidade defensiva para detetar e 

interpolar o tráfego. A deteção de padrões na rede é responsável pelas capacidades do 

eBPF e da aprendizagem automática; o eBPF é utilizado como classificador inicial e a 

rede neural feed-forward é apresentado como um segundo classificador que irá 

aprender continuamente com o contexto posicionado, bem como aplicará previsões de 

um modo contínuo. 
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Abstract 

The constant monitoring and collection of data within modern infrastructures for 

detection, protection, and real-time data flow analysis is a crucial aspect of Endpoint 

Detection and Response (EDR) systems. This thesis presents a proof-of-concept low-

level tracing tool as a fundamental element for a flexible and customisable EDR solution. 

This solution, based on eBPF and anomaly detection using neural networks, is designed 

to adapt to the unique needs of different infrastructures. It aims to extract and analyse 

network context from low-level operations and apply stateful and packet filtering 

heuristics for continuous network pattern detection across distributed workloads, using 

Intel SGX and interpolating traffic when previously defined conditions are met. By 

focusing on two distinct exploitation contexts, the EDR is positioned as a defensive unit 

for detecting and interpolating traffic. Distributed network detection is accountable for 

both eBPF and machine learning capabilities; eBPF is used as the initial classifier, and 

the feed-forward neural network is a second classifier that will continuously learn from 

the positioned context as well as apply continuous predictions.  
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1. INTRODUCTION 

Endpoint Detection and Response (EDR) systems have emerged as a pivotal component 

in modern infrastructures, particularly in the realm of data security. These systems are 

designed to continuously monitor and gather data, aiding in detection, sovereignty, and 

real-time interpolation of data flows in the residing infrastructure. In the EDR landscape, 

there are open and closed source solutions that provide several strategies for intrusion 

detection and prevention: 

- Wazuh: Open-source security monitoring platform which provides intrusion 

detection, log data analysis and file integrity monitoring using the Elastic Stack, 

[1].  

- OSSEC: An open-source host-based intrusion detection capable of applying log-

based intrusion, rootkit, malware detection, active response, compliance 

auditing, file integrity monitoring and system inventory, [2]. 

- CrowdStrike Falcon: EDR solution with advanced threat hunting, alerting and 

automated investigation capabilities used by mid to large-sized enterprises [3]. 

- SentinelOne: AI-powered prevention, detection, response and hunting platform 

with endpoint transparency and autonomous real-time action, with several 

advanced functionalities based on the selected service [4]. 

This thesis proposes an alternative solution for intrusion detection and prevention, based 

on eBPF filtering and the use of hardware security modules (i.e., Intel SGX) for 

confidential computing. Sovereignty, configuration and management of data produced 

by the proposed tool, as well as deployment and configuration of Wazuh and RabbitMQ, 

were not considered in this thesis. Although not addressed, these configurations and 

setting are publicly available from the source-code developed and used throughout this 

thesis, referenced as edrc2u under the branch: thesis-poc hosted in GitHub [5]. 

As objectives, the following capabilities and functionalities were considered for the proof-

of-concept tool, so that it would be possible to analyse network traffic from pre-defined 

targets: 

• Securing: To provide a tool capable of interpolating and detecting malicious 

activity directed to arbitrary Docker services with a tentative approach to ensure 

confidentiality, integrity and authenticity of both scanned and produced traffic, 

using a producer/consumer eBPF network traffic filtering stack and Intel SGX-

based anomaly detector subsystem.  
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• Detection and Response: Ensure detection and response capabilities based on 

a pre-defined context and defensive assumptions. Such capabilities result in 

continuous logs being produced, triaged (i.e., Anomaly Detection) and promptly 

forwarded for local and/or remote Wazuh reporting. 

• Low-level Tracing: Apply deep and shallow packet inspection techniques to 

trace for packet data and meta-data, respectively. Data produced from tracing is 

then either logged internally for processing and storage, or promptly forwarded 

to a Wazuh instance. 

 

Figure 1 - EDR Overview 

 

 

 

 

 

 

 

 

 

 

 

 



FCUP 
EDR: Securing Low-level tracing for intrusion detection 

3 

 
 

2. BACKGROUND 

eBPF (extended Berkeley Packet Filter) is a revolutionary technology within the Linux 

operating system with programmable nature and execution capabilities within the kernel 

space. eBPF has garnered significant capabilities in various domains, including system 

observability, security, and performance. 

In its current form, eBPF provides extended visibility and automation in system-level 

activities including real-time events. Several eBPF program types are attachable, most 

of which are hooked in distinct sections of the operating system. The eBPF program type 

and placement (“hook-point”) are highly dependent on the desired functionalities and 

purpose (i.e., Networking, security, performance and/or monitoring). 

There are several eBPF program types, but for the EDR's network tracing stack, only the 

eXpress Data Path (XDP) and Traffic control (TC) types were considered [6]. The stack 

is thus compromised of two eBPF programs, XDP and TC, running simultaneously in 

opposite network planes to capture data flowing to and from our source (i.e., Host, where 

eBPF programs are attached). XDP is "hooked" at the network driver level allowing the 

program to interpolate (i.e.: pass, drop or redirect) network data packets before they 

reach the host's operating system network stack, thus providing high-performance 

packet processing. The TC program is directly attached to the host's operating system 

network stack, processing packets as they reach or leave the host [7]. Current solutions 

such as CrowdStrike Falcon XDR [3] or Cilium’s Tetragon [8] also consider a similar 

approach, leveraging eBPF for low-level tracing and automation for improved security 

and sovereignty. 

 

Code 1 - XDP (C) Program 

eBPF adoption was initially stymied due to program compatibility issues across different 

versions of the Linux kernel. However, BPF CO-RE (Compile Once - Run Everywhere) 
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provided a modern approach to allow eBPF to be compiled once and run correctly across 

different kernel versions without the need for multiple compilations. This portability came 

at a cost since, once eBPF programs are loaded, verified and executed in the kernel 

context, they are still subject to the surrounding memory layout of the kernel environment 

with constrained control [9]. 

One of the crucial enablers of this approach was the progressive adoption of BPF Type 

Format (BTF) by the Linux kernel as the natural successor of DWARF for representing 

and describing all the types of information of the inherent C programs (kernel-space). 

This transition resulted due to the simplicity, de-duplication algorithm and consequential 

reduction in size of BTF when compared to DWARF [10]. 

 

Figure 2 - BPF CO-RE Overview 

In a traditional BPF CO-RE deployment, there are several needed components: the 

target kernel, user-space BPF loader library (i.e., libbpf) and a compiler (Clang). The 

BPF loader library is responsible for linking and verifying the generated BPF bytecode 

with the available BTF type information. Verification of the pre-compiled BPF program 

requires verifying discrepancies between different kernels (and their types). Linking is 

then performed by the BPF loader library, which is responsible for adjusting the BPF 

code to the specific target kernel type and promptly attaching it to the relevant "hook 

points". The target kernel where the BPF program(s) is to be attached can stay 

completely agnostic, as the kernel type is verified and pre-compiled using the generated 

BTF type information (i.e., vmlinux.h – header file with target kernel information) [9]. 
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2.1. aya-rs 

aya-rs is a Rust library that simplifies the described eBPF compilation process. It is built 

purely with Rust, using only the C standard library (i.e., libc) to execute system calls 

when necessary. This library provides a Rust-based wrapper for building eBPF programs 

and their corresponding loader(s) [11]. 

 

Figure 3 - aya-rs Build Overview 

One key distinction of this library from its traditional counterpart is the requirement for 

both kernel-space and user-space code. This is essential for the swift verification, 

attachment, and execution of the eBPF program(s) (t=1). Syntax and program 

constraints must be followed, including additional steps for eBPF programs that rely on 

internal kernel-type definitions. In such cases, the respective type definitions must be 

generated in advance and then imported into our eBPF Rust code. This process ensures 

that the code is ready for deployment (t=0) [12]. 

With this deployment, eBPF programs run in a constrained runtime environment with no 

access to the host's heap space and limited stack size (i.e., 512 bytes). Rust code is also 

restricted to the 'core' library, the standard library can't be used as the code will be 

executed in kernel-space. 

2.2. Intel SGX 

Intel's Software Guard Extensions (SGX) is a technology which provides the means for 

provisioning a hardware enclave within the host. SGX enclaves are designed to provide 

secure execution environments within a CPU to protect code and data from disclosure 

or modification, where sensitive data and/or code can be securely executed, shielding 

them from potential external breaches, even if the host is compromised [13]. Intel's SGX 

creates isolated code-execution regions in memory that are protected by hardware 

encryption. This technology allows developers to run and protect code by using 



FCUP 
EDR: Securing Low-level tracing for intrusion detection 

6 

 
 
protections in the processor to ensure that a malicious actor cannot directly access 

enclave memory at runtime [14]. 

2.2.1 Rust Environment 

Building and running a Rust-based SGX code is achievable by using Apache's open-

source Incubator Teaclave SGX Software Development Kit (SDK) [15]. This open-source 

SDK allows developers to write Rust-based code that will be executed within SGX 

enclaves, ensuring data within it cannot be read or tampered with [16]. 

Developing SGX enclave code in Rust presents unique challenges. Enclaves, where the 

code will be executed, lack full access to OS interfaces and hardware. This means that 

libraries inheriting Rust's standard library may not be directly used due to the isolation 

and specific architectural requirements of SGX. Instead, a subset of the Rust standard 

library specifically tailored for the enclave environment is required. This is where 

Incubator Teaclave SGX SDK (i.e., sgx_tstd) comes in, providing most of the 

functionalities from the standard Rust environment  [17]. 

2.3. Infrastructure 

2.3.1 Producer / Consumer Model 

In a producer/consumer model, producers are entities that generate and deliver 

messages to a message broker (i.e., RabbitMQ). Consumers receive and process these 

messages from the broker. With this model, a granular separation of functionalities is 

achievable, where computational units can focus solely on the respective MQ role 

(producer/consumer) and in the case of consumers, apply other operations on said data. 

2.3.2 Transport Layer Security 

Transport Layer Security (TLS) is a cryptographic protocol designed to provide secure 

communications over networks. As per RFC 5246, “TLS should be used to establish a 

secure connection between two parties” and, when applied, can provide integrity and 

confidentiality by preventing eavesdropping, tampering or message forgery. TLS was 

used to establish and secure communications between the respective producers and 

consumers as a pre-emptive measure to ensure no malicious activity can be induced to 

skew or alter the intended operations and their underlying logic [18]. 

Considering the context in which TLS is applied in the EDR, in order to establish a secure 

connection, the root CA certificate, client or server certificate and corresponding private 
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key are required. The CA certificate will ensure that the TLS’s server is trusted, 

considering that the CA certificate is self-signed. The private key, used in conjunction 

with the respective certificate, is a critical component that must be securely stored and 

protected. This underscores the importance of maintaining the confidentiality and 

integrity of the TLS session. 

2.3.3 RabbitMQ 

RabbitMQ is an open-source message broker software that implements the Advanced 

Message Queuing Protocol (AMQP), designed to facilitate communication by reliably 

sending and receiving messages using message queues. RabbitMQ handles storing, 

routing and delivering of messages, ensuring asynchronous communication to the 

underlying producer and consumer model [19]. 

Assuming the producer/consumer model with RabbitMQ, messages from producers are 

sent to exchanges, which then route them to queues based on internal routing keys and 

binding rules. Consumers solely need to subscribe to defined queues and process 

messages asynchronously. Producers and consumers require a valid and matching CA 

certificate, client certificate, and private key, as well as a server certificate and private 

key. For simplicity, upon each run, the CA certificate is self-signed, a client key is 

generated using RSA, and a client certificate is issued by the CA (the same process 

applies for the server certificate and private key). Before execution, the certificates and 

private keys are distributed to the relevant parties, ensuring a secure connection. 

2.4. Logging 

Logging as a capability is the process of systematically delivering and storing relevant 

events to pre-defined destinations. (i.e., Wazuh Manager/Agent and/or SGX enclave). In 

this context, these events can be abstracted as system logs (i.e., syslog) [20], which are 

sent to remote or local Wazuh instances (Manager or Agent, respectively) for manual 

post-processing. Optionally, confidential computing capabilities can be leveraged from 

SGX using a long-lasting consumer model (i.e.: inherited from underlying MQ 

infrastructure). Rsyslog (Rocket Fast System Logger) manages the storage and delivery 

of EDR events and system logs to Wazuh [21]. This framework is central to the EDR 

since it is the sole component responsible for forwarding logs from the underlying MQ 

infrastructure to the available reporting and visualization agents. Rsyslog natively logs 

events captured from the system context but also supports forwarding logs to remote 

endpoints using either UDP or TCP. The framework can also be configured to secure 

connections using TLS [22]. 
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2.5. Vulnerable Targets 

Vulnerable targets were used for testing and analysis of the results from the proposed 

EDR solution. Both targets were built and executed independently in isolated network 

namespaces in Docker. For testing, Spring Boot version 2.6.1 was used with log4j 

version 2.14.1 and JDK 1.8.0_181. For LDAP testing, Openldap version 1.4.0 was used. 

2.5.1 Spring Framework 

Spring Boot is an open-source Java-based framework that simplifies the development of 

production-ready applications. It provides a streamlined approach to configuring and 

deploying Java applications by incorporating convention over configuration, which 

reduces the need for extensive setup. Spring Boot is widely used for its ability to create 

stand-alone, production-grade Spring applications with minimal configuration. Log4j, part 

of the Apache Logging Services, is a robust logging framework for Java applications. 

Log4j's flexible architecture allows for dynamic configuration, multiple output formats, 

and efficient log message management. In the context of Spring Boot applications, Log4j 

can be seamlessly integrated to provide enhanced logging capabilities [23]. 

2.5.2 LDAP 

Lightweight Directory Access Protocol (LDAP) is a protocol used to access and maintain 

distributed directory information services. It is widely employed for managing user 

information, authentication, and access control in enterprise environments. OpenLDAP, 

an open-source implementation of LDAP, provides a robust and flexible 

framework for directory services [24]. 

2.6. Anomaly Detection 

Anomaly detection is a critical task in data analysis aimed to identify patterns that deviate 

from expected behavior. In the context of neural networks, particularly feed-forward 

models, anomaly detection involves training the network to recognize standard data 

patterns and flag deviations as anomalies. Feed-forward neural networks are structured 

to process input data sequentially through layers of interconnected nodes, learning 

complex patterns through backpropagation. By training on standard data, the network 

learns a representation of typical behavior, enabling it to detect anomalies as significant 

deviations from this learned representation. Rusty-Machine was leveraged to facilitate 

this task. The Rusty-Machine library is a machine-learning framework in Rust that 

facilitates the development of such models [25]. It provides tools for constructing and 
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training various models, leveraging Rust's performance and safety features. This library 

efficiently handles large datasets, which is crucial for accurate anomaly detection. 
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3. MOTIVATION 

3.1. Attacker Model 

In this section, we reiterate the EDR's role in mitigating security threats within the explicit 

exploitation paradigms. In each paradigm, the attacker poses a security threat, and the 

EDR, as the main detection and interpolation unit, provides a secure and protected 

environment.   

Two attacker models were considered. For each attacker scenario, the proposed tool 

was developed to, at least, be able to detect the defined exploit. Interpolation capabilities 

are only expressed in the first attacker model (i.e.: Log4Shell) since there is a clear 

distribution of traffic and several solutions for mitigating and restricting the behavior of 

the malicious actor conducting the exploit. 

3.1.1 Log4Shell 

 

Figure 4 - Log4Shell RCE 

The Log4Shell vulnerability, CVE-2021-44228, is a JNDI injection flaw in the logging 

messages processing in Log4j that can lead to Remote Code Execution [26]. The red 

(left) side illustrates the malicious actors, which consists of the dispatcher, responsible 

for delivering a malicious JNDI and LDAP connection string, and the corresponding 

proxy, which will communicate with a vulnerable instance (blue). 

The execution flow behind the Log4Shell vulnerability can be conducted in several ways. 

For RCE, a target with a vulnerable Log4j version with a point-of-access/endpoint that 
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allows attackers to send an arbitrary exploit string that is interpreted as a log statement 

and logged internally is required. Practically, this was achieved using an SpringBoot 

application with a vulnerable log4j version. The exploit relates to abusing Log4j requests 

sent to arbitrary LDAP and/or JNDI endpoints. The vulnerable SpringBoot instance 

processes such Log4j requests from an HTTP header input. To simulate the complete 

exploitation chain, two containers are provisioned: a vulnerable SpringBoot and a JNDI 

proxy container. The initial request, which includes a malicious JNDI payload in the 

respective HTTP header, is sent manually. The vulnerability can be triggered when Log4j 

attempts to process log messages containing malicious JNDI lookups. By sending a 

carefully crafted log message to a vulnerable Log4j server, an attacker can exploit this 

flaw to execute arbitrary code with the privileges of the application or service using Log4j. 

This event can lead to a complete compromise of the affected system, enabling attackers 

to gain unauthorized access, infiltrate sensitive data, or perform other malicious 

activities. Log4Shell has been classified as a critical vulnerability due to its potential 

impact and the widespread usage of the Log4j library in various Java-based applications 

and systems. 

The code snippet, Unsecure Log4j Handler Example, represents how the logging 

statements will be processed when the vulnerable target receives an HTTP request with 

the X-Api-Version header. The exploit string (JNDI-Payload, Figure 4 – Log4Shell RCE) 

must be specifically crafted to leverage the Lookup capability, allowing remote object 

referencing and execution during run-time [27]. As of writing, version 2.17 of Log4j 

requires that specific system variables be updated (i.e.,log4j2.enableJndiLookup), to 

enable the use of Lookup procedure in the JNDI protocol. Testing was performed using 

version 2.14.1 of Log4j, which enables JNDI by default (Java Development Kit version 

1.8.0). Log4Shell was classified as a critical vulnerability due to its potential impact and 

the widespread usage of the Log4j library in various Java-based applications and 

systems. 
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Code 2 - Unsecure Log4j Handler Example 

Network traffic heuristics applied during runtime by the EDR assume that the vulnerable 

target is provisioned in an isolated context (i.e., Docker). Outbound traffic is thus 

inexistent unless initiated by the Log4Shell exploit, due to the JNDI Lookup which will 

initiate an HTTP GET request to fetch the malicious object reference. By applying 

deterministic heuristics, the EDR can provide observability and interpolation capabilities.  

3.1.1.1 Malicious Proxy 

The JNDI/LDAP proxy server will be responsible for receiving requests triggered by the 

JNDI Lookup in SpringBoot (Log4j) and promptly responding with malicious Java code 

that the vulnerable target will execute. 



FCUP 
EDR: Securing Low-level tracing for intrusion detection 

13 

 
 

 

Figure 5 - JNDI:LDAP Lookup Overview 

Figure 5 illustrates the procedure throughout this exemplary RCE attack. Detection 

complexity arises from applying obfuscation in the JNDI lookup request (1), to evade 

manual and/or static pattern matching; Attack scalability may also drastically shift 

depending on the type of remote object reference and the intended exploit result. 

3.1.2 LDAP Tracing 

 

Figure 6 - LDAP Tracing Overview 

For this attacker model, the goal of an arbitrary attacker is to leak information from a 

vulnerable LDAP server, using ldapsearch [28], forcing the compromise of stored 

information (red). As such, LDAP traffic is inspected by performing medium packet 

inspection, expecting traffic as per RFC 2251 and analyzing for a subset of protocol 

operations (protocolOp) to provide contextual information during runtime and other 

relevant packet meta-data. LDAPS, the secure extension of LDAP, provides encrypted 

traffic although was not considered for this scenario. 
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4. ARCHITECTURE 

 

Figure 7 - EDR Architecture 

4.1. eBPF Maps 

eBPF maps are the cornerstone for interpolation and tracing. They represent data 

structures that allow shared data storage between user and kernel space. The use of 

these maps allows the inherent eBPF programs to maintain shared information during 

runtime. 

 

Figure 8 - EDR eBPF Maps 

Considering the EDR scope, all eBPF maps except EVENTS can be abstracted as a 

data structure with 1024 entries that store key-value pairs of unsigned 32-bit integers 

(i.e., HashMap of u32 value). The u32 data type represents non-negative integer values 

ranging from 0 to 256 (23
2−1)  (inclusive), and IP address decimal values fit within this 

closure.  
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Thus, by indexing HashMap with these values, the IP address can be encoded in a low-

level manner and maintained during run-time. eBPF data structures are required for two 

possible reasons: 

1. Maintaining state throughout the execution of eBPF-based programs. 

2. Data traversal from different Protection Rings in the Linux Operating System, 

such as from kernel-space to user-space and vice-versa, is a key function 

that eBPF data structures enable. 

 

- HITS: eBPF data structure used to count the number of occurrences of identified 

IP addresses during run-time. The key and values are both u32. This structure 

allows the EDR to abstract counter values for each key on a temporal basis, 

allowing state recognition at the lowest level. 

 

- LOOKUPS: Second counter-based eBPF data structure used to enumerate the 

amount of JNDI lookups performed. With this information, the kernel space can 

keep track of remote referencing of objects, allowing it to react accordingly to any 

subsequent traffic at the lowest context level with the lowest possible overhead. 

 

- BLOCK/ALLOW LIST: eBPF maps that control the interpolation capabilities from 

the EDR. These structures are crucial for interpolation as they directly control the 

EDR’s behavior, allowing incoming or outgoing traffic to be blocked or allowed 

based on a unique IP address. 

 

- EVENTS: This type of eBPF map is used exclusively for sending events with a 

defined structure from kernel space to user space. It is referenced as a 

PerfEventArray, an internal aya-rs eBPF data structure specialized in allowing 

efficient data transversal from kernel space to user space [29]. 

4.2. Kernel-space 

Kernel space is composed of two eBPF programs and the eBPF maps defined earlier. 

The programs were devised so that the EDR can identify and analyze inbound and 

outbound traffic, with the capability of cross-referencing traffic information irrespective of 

the plane where it is being interpolated. Although subject to the constraint that our 

vulnerable instance is isolated, as a Docker service, without any overlapping activity and 

that these kernel-space programs are attached to the host and appropriate interface 

where these services are running and expected to receive network traffic. 
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Figure 9 - Kernelspace overview 

Outgoing or egress traffic is picked up from the eXpress Data Path (XDP) program while 

incoming or ingress traffic is traced by Traffic Control (TC). The eBPF maps make 

intermediary data accessible to both programs. The EDR is capable of maintaining a 

state, which allows it to interpolate traffic according to previously defined rulesets and 

react preemptively (if set). 

 

Figure 10 - Kernelspace analysis interface context 

eBPF program hooking is performed by attaching the respective XDP program to the 

Network Interface Card (NIC) driver level while the TC program is attached within the 

Traffic Control Linux subsystem. For the defined attacker scenarios, targets were run as 

micro-services and as such, eBPF programs were attached to the Docker bridge 

network. This bridge network allows inter and intra communication from the micro-

services, so it was chosen to filter applicational traffic. Docker also uses Network 

Namespaces, a virtualization of the network stack for the container(s), so that each has 

an isolated network environment but is connected to the exterior via the bridge network 

(i.e., docker0). 
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Figure 11 – Kernel space analysis Docker context 

The host will initially capture traffic sent to the applications, resulting in internal routing 

to the application, sending traffic to the docker bridge network and then forwarding it to 

the appropriate isolated network namespace. 

4.2.1. Traffic Control 

 

Figure 12 - TC Attachment Context 

One of the main differences between TC and XDP BPF program types is the kernel 

layers to which these programs are attached. In XDP, the BPF code runs at a layer 

before the kernel’s networking stack processes a packet, resulting in better filtering 

efficiency than TC programs. In contrast, TC BPF programs run at a layer within the 

kernel’s networking stack. This means that code will be triggered during packet tracing 

by the host’s networking stack, which requires different procedures to allocate packet 

information and metadata tracing, leading to more overhead. The TC program filters all 

inbound traffic to the application layer. Since applications are deployed as docker 
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services, eBPF programs must be attached to consider this placement. As such, the TC 

BPF program is placed at the egress plane relative to the docker network bridge, but 

from the host’s perspective, it is perceived as an ingress filter, as illustrated in the last 

section.  

Regarding packet inspection, shallow packet inspection is conducted, inspecting packet 

headers from an HTTP GET request. Packet bytes are analyzed by comparing them with 

pre-defined byte sequences that are imported to stack memory and accessible during 

runtime (i.e.: configuration parameter). 

The figure bellow illustrates how the inspection is performed for HTTP GET requests with 

the respective HTTP header (X-Api-Version).  

 

Figure 13 - EDR TC Tracing 

Packet information is indexed by byte (i) and using this indexation, byte comparison is 

performed on a byte-per-byte basis. →∗ , represents the next and preceding iterations of 

such index where check is the relevant checkpoints where meta-information can be 

derived from the incoming data. For example, check 1 assumes the first three packet 

bytes match: ‘G’, ‘E’, ‘T’, respectively (i.e.: →3).  

offset+13 defines the explicit HTTP index where the logging statement will be inserted 

for interpretation by the vulnerable SpringBoot instance. Offset is used as a constant 

defining the HTTP header: X-Api-Version as referred in Attacker Model 1. Under these 

assumptions, the TC program is able inspect for JNDI connection strings and extract 

meta-information at check 3 & 4. 
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4.2.2. eXpress Data Path 

 

Figure 14 - XDP Attachment Context 

The EDR’s XDP BPF program is attached to the ingress networking data path for the 

host’s Docker network bridge (virtual), as XDP programs are natively attachable only at 

the ingress plane. Although from the host’s perspective, this program functions as an 

egress filter, tracing outbound traffic from the Docker services (i.e., LDAP server, 

Spring/Log4j Logger). This type of eBPF program operates at the earliest possible point 

in the software stack, specifically before any packet processing occurs within the kernel's 

networking stack. In contrast to TC BPF program types, XDP programs can only be 

triggered at ingress points in the networking data path as an independent program 

running apart from the host’s networking processing stack. 

This BPF program is used in tandem with TC to complete the EDR’s packet filtering 

stack. It analyzes the host’s outbound traffic based on state information populated and 

shared between both programs at runtime via eBPF maps. Due to its early positioning in 

the data path, XDP ensures higher efficiency for packet inspection, making it suitable for 

analyzing TCP/HTTP or LDAP traffic and/or applying extensive pattern-matching logic. 

The analysis of LDAP traffic is implemented using a straightforward approach to traffic 

tracing. Unencrypted LDAP traffic is considered throughout as the EDR employs deep 

packet inspection techniques to verify packet data and extract relevant parameters for 

analysis as well as meta-data from the packet and/or flow. 
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Figure 15 - XDP Tracing 

Starting with the “Message ID” LDAP parameter, this parameter correlates requests and 

responses. In this simplified approach, the EDR considers values from `0 .. 255` (u8), 

assuming no more than 255 requests will be sent. This is raised as a limitation, but 

alternatives can be efficiently introduced to trace the correct ID for more than 255 

requests. For instance, knowing that the protocol operation is the next valid byte, we can 

cycle through the packet bytes starting from the Message ID offset until a valid Protocol 

Operation is identified. 
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Regarding the "Protocol Operation" parameter, this parameter is traced by eBPF to 

detect outbound results and/or responses from the LDAP server (Docker service). 

Outbound HTTP traffic analysis also complements the TC traffic stack by inspecting for 

outbound HTTP traffic that may be used to correlate with inspected traffic from TC. 

The EDR maintains eBPF maps throughout execution; both TC and XDP can construct 

state together and infer network operations based on the state. If a TC program detects 

a JNDI Lookup Request being sent to the logger, XDP may infer that the proceeding 

HTTP GET request is relative to the JNDI Lookup. 

 

Figure 16 - XDP Tracing Timestamped 

4.2.3. XDP  TC 

When used in tandem, XDP and TC programs can maintain a reference to a portion of 

the network scope and intervene at the lowest level. State information is maintained 

using the HITS and LOOKUPS eBPF map data structures. The HITS map maintains a 

counter for each occurrence of an IP address (HashMap key), while the LOOKUPS map 

increments a counter with the respective packet source IP address as the key (i.e., Single 

use-case). 

The LOOKUPS map maintains pattern-matching information based on the received 

packet data. If a payload is detected, the LOOKUPS eBPF map increments a counter 

with the application IP address as the key, that is the respective packet destination 

address. 

The HITS map allows for an approach to detecting unexpected outgoing traffic. From 

XDP (egress filter), unexpected outgoing traffic is identified when the destination address 

has fewer occurrences than the source address, which, in this case, is the application's 

IP address. Considering this scenario, if the LOOKUPS map contains a recently updated 

counter value for the respective source address, then both heuristics determine that the 
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outgoing traffic is not only unexpected but malicious, from which eBPF can either 

interpolate and/or alert depending on the defined configuration. 

 

Deterministic heuristics were built around these principles and are represented as 

follows: 

y, Application IP Address 

x, Arbitrary IP Address 

(y → x), Packet flow from y (source) to x (destination).  

As to simplify heuristic designing the following principle is enforced: 

(1) If (y → x) at t=1, then it is implicit () that there was a previously occurring reverse 

packet flow, (x → y) at t=0. 

(y → x)  (x → y) 

Based on this, the following representation can also be abstracted: 

(y → x)  C(y)++ & C(x)++ 

where C(z) is a counter operation of the number of occurrences for a given IP address 

z, where ‘++’ is equivalent to C(z) = C(z)+1. 

Based on this representation, heuristics can be applied to deliberate when packets 

should be analyzed. If the number of occurrences from an arbitrary address is less than 

the number of occurrences for the application address, then we can conclude that the 

traffic flow is unexpected. 

Based on these assumptions, we can then conclude: 

C(x) < C(y)   ⎯ (x → y) 

Suppose the number of occurrences from an arbitrary address is less than the number 

for the application address. In that case, it is assumed no previous data flow from the 

source address has been registered to the application that the EDR is safeguarding (i.e.: 

“⎯ (x → y)”) and consequently this traffic is labeled as unexpected, assuming (1). 

In this context, these programs were strategically placed to capture network contexts. 

However, it is derived from the need to interpolate and analyse deterministic network 
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patterns at the lowest level (data packets). The most predominant example is the 

procedure-based actions behind a JNDI Lookup when applied to a Log4J logger. These 

actions can be represented as sequential operations that occur due to an initial trigger 

operation, which can be abstracted to a user request sent to the logging system to fetch 

a remote object (i.e., Log4Shell RCE). A simpler and more convenient example of a 

deterministic network pattern is the data flow/operations behind the Internet Control 

Message Protocol echo procedure ping command. 

An echo procedure (i.e.: Ping Command [30]) is only completed when an explicit echo-

request packet corresponds with an echo-reply. Thus, we can determine an underlying 

deterministic pattern: an echo reply will only occur if an echo request occurs. As such, 

operations are not equivalent and, in fact, induce implications. The latter or the former 

doesn’t imply the procedure (X), but the conjuncture does. 

 

Figure 17 - Ping Example 

The operations follow a deterministic sequential flow in a JNDI Lookup procedure behind 

an RCE. Each operation leads to the next, where the conjuncture of the operations 

represents the whole exploit. 

However, there is an inherent difficulty in asserting realistic deterministic patterns when 

a high load of information is being analyzed, or operations are complex. Patterns were 
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relativized to the lowest level, assuming a deterministic nature. Identifying patterns is 

also predominantly complex when overlap or duplication of traffic occurs, as specific 

protocols, such as UDP, might not deliver consistent and ordered packets. Encrypted 

traffic also narrows the packet inspection abilities that such eBPF programs might 

perform. Packet meta-data can be used to differentiate and apply low-level triage of 

network traffic. 

4.3. User-space 

 

Figure 18 – User-space 

User space is where the EDR can provision the necessary environment to build and run 

the needed eBPF programs as well as initiate the TLS MQ producer, which will 

continuously forward eBPF events to a pre-defined message queue. The respective MQ 

consumer will then complete the TLS connection and continuously receive messages for 

post-processing. In practice, the EDR’s kernel-space functionalities are built on the 

no_std Rust environment [32]. This environment is limited to primitive data types and 

macros imported from the core crate, which are used to import the bulk configuration 

parameters to kernel space. Data is allocated to the stack using static file inclusion. Thus,  

any modifications to this data from user-space after the eBPF programs have been 

attached will not be reflected. Configuration modifications after the EDR's initialization 

require re-compilation and attachment.  
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User space is also a predominant part of the EDR since it transforms and packages raw 

events from kernel space. Events are represented using a typical structure from both 

protection rings, EventLog: 

 

Code 3 - EventLog Definition 

From this structure, we are able to extract event information relative to the type 

(Inbound/Outbound), the route the packet is transversing (Source/Destination IP), the 

action assumed (PASS or DROP) and a custom data field referred to as levels (event 

verbosity) which we use as a one-hot encoded variable to label the event based on the 

type (i.e.: inbound/outbound HTTP GET request). From these data fields, the EDR can 

transform raw u32 values as anomaly detector features and extract network context in 

the form of operational messages piped to the Wazuh. 

The eBPF programs are the EDR’s best-effort classifier, classifying network operations 

as events or alarms (PASS or DROP) based on user-defined rules. While the anomaly 

detector (feed-forward neural network) is the second-step classifier receiving features 

from identified events and classifying them as abnormal or usual. Rsyslog, Rocket-fast 

System Logger, is the intermediary between the EDR and Wazuh. This framework 

provides a wrapper over the host operating system that allows for aggregating 

application and host-level logs, logging them locally, as well as forwarding them to the 

defined Wazuh instance. We can thus maintain the local and remote context of the logs 

produced and the host's environment. 
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Figure 19 - Userspace / Confidential Computing Operation (SGX) 

During run-time, the EDR deals with high volatility when analyzing network events. As 

such, RabbitMQ was leveraged to accommodate secure asynchronous transferals of 

data, allowing computational capabilities to be distributed according to the proposed 

producer/consumer model with a tolerable amount of latency as events or alarms are 

and must be time sensitive.  

Figure 19 illustrates the defined modularity, with workloads distributed across differential 

computing operations. It assumes a topology where Anomaly Detection (A.D.) is 

performed either locally, that is, as soon as the eBPF event is triaged and processed, or 

remotely from a confidential computing unit (i.e., Intel SGX enclave), with the appropriate 

MQ consumer stub. Both approaches were considered for distinct purpose and assumed 

that along with the system and EDR logs, the appropriate prediction results would be 

produced (Local A.D.) and logged internally using Rsyslog and consequently forwarded 

to Wazuh or produced remotely and then forwarded to Wazuh (Remote A.D.).  

Local A.D. was mainly used for testing purposes as it provided a quick and low-latency 

approach. Remote A.D. was favorable from a security perspective since the anomaly 

detection model is invocated and maintained as a sub-set of the enclave, leveraging its 

confidential computing capabilities. The model is initialized, trained and invocated 

explicitly within the SGX enclave using rusty-machine-sgx, Rust Crate [25]. 

In order not to skew results provided by the neural network model and assume 

conformity, for both local and remote A.D. deployments, the same model (and 

configuration parameters) were considered – Binary Classification Neural Network with 
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the following layers: [7,11,3,1], pre-trained with a sample dataset (11x7) from Attacker 

Model 1 sample run. 

For the EDR, time is of the essence. Identification of attacks and response rates must 

be swift and precise since we are dealing with real-time events. Because of this, the EDR 

requires two primary requisites: to identify and report network events or alarms while 

they are occurring and to be able to provide a basis for the validity of the interpolation 

and classification of an event. This means that Wazuh Manager should be able possible 

to trace-back and validate the EDR’s behaviour. 

One of the main requisites of the anomaly detector model is to be able to continuously 

predict models and "learn" from the network context. This is achieved by applying the 

following pseudo-code: 

Pred >= 0.09 

  then: Anomaly 

else: Append Event to dataset 

From the A.D. unit (i.e., local or remote), events with prediction results above or equal to 

the static threshold are classified as anomalies, or the corresponding event is appended 

to the dataset. As network traffic changes overtime, patterns are expected to change, 

and there will be a rapid distribution of data. Thus, our model is expected to be highly 

volatile from the start. 

When writing the thesis, the training dataset introduced to the model was relative to the 

Log4Shell Vulnerability (Attack Scenario). As such, the dataset includes various 

iterations of the Log4Shell attack to a vulnerable Spring Boot web application hosted in 

Docker. The dataset consists of 11 rows and 7 columns. (11x7 matrix).  

4.3.1 Feature extraction 

Feature extraction occurs from the log message (event) received from the EDR’s kernel 

space. From the event, the EDR extracts 7 features: Two IPv4 addresses, Traffic data 

flow type (XDP vs TC), eBPF action, transport layer protocol type, application layer 

protocol and the application operation (identified by eBPF).  

Feature extraction requires normalization (scaling) and pre-processing steps to encode 

categorical data into a numerical format. This type of encoding is based on one-hot 

encoding, a technique used primarily on data representation and pre-processing, where 
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categorical data is represented as a matrix of binary values (0s and 1s). Although 

features aren’t represented as a matrix of binary values, they are scaled to the numerical 

equivalent. Also referred to as binary scaling, labels are converted to an equivalent 

representation as a matrix of binary values and from there, unique numerical values are 

calculated for each label. 

 

Figure 20 - Feature Extraction 
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For the case of only two labels, the encoded values can be abstracted to boolean 

conditionals. Considering Figure 20, certain encoding schemes can be abstracted to a 

simple boolean attribution. 

Multi-label (i.e., > 2 labels) follows the same encoding schema without the binary 

normalisation abstraction. Each categorical label is cast as a matrix of binary values, 

then scaled to the numerical equivalent and, lastly, are normalised so that all follow the 

same numeric scale representation (i.e.: Values starting from “0”). 

IPv4 addresses are the sole features that are pre-processed differently. These features 

are represented as values between 0.0 — 1.0. They are calculated by taking the four 

octets of the IP address, scaling each octet to a value between the same range and then 

combining them with the appropriate weights (multiplier, according to index (i)) to 

produce a final value between 0.0 — 1.0. In this instance, the multiplier is crucial to 

achieving uniform scaling, without any additional scaling (i.e., the presence of the 

multiplier). Each octet would contribute equally to the final value, meaning that the value 

would vary according to the proportion of magnitude of the octets and would not fall under 

the desired uniform range ([0.0-1.0]) — A “larger” octet would have a more substantial 

impact over the final value in comparison to “smaller” octets. An important nuance is that 

octets vary in importance according to their position in the address due to its hierarchical 

addressing (Network and Host portions of the address). The multiplier needs to reflect 

this property in the final scaled value. Based on the addressing hierarchy of IPv4, the 

leftmost octets (𝑂𝑖) represent the network portion. These will have the least significant 

impact on the final scaled value. In contrast, the rightmost octets (𝑂𝑖′) represents the 

host portion and will have the most significant impact over the final result. This occurs 

since, fundamentally, Host information is valued over Network information — It is more 

likely to have significant unique hosts rather than networks. 

[INFO  EDR] 172.17.0.1 --> 172.17.0.2 - PASS - LOG: 

[FEATURES] saddr:0.003922626083972407 daddr:0.007844194711423388  

action_scale:0 traffic_scale:1 transport:0 application:0 op:0 

[INFO  EDR] 172.17.0.1 --> 172.17.0.2 - PASS - LOG: ${jndi:ldap match; 

[FEATURES] saddr:0.003922626083972407 daddr:0.007844194711423388  

action_scale:0 traffic_scale:1 transport:0 application:0 op:6 
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[INFO  EDR] 172.17.0.2 --> 192.168.1.54 - PASS - LOG: TCP Traffic; 

[FEATURES] saddr:0.007844194711423388 daddr:0.21179012223785998  

action_scale:0 traffic_scale:0 transport:1 application:0 op:0 

[INFO  EDR] 172.17.0.2 --> 192.168.1.54 - DROP - LOG: TCP Traffic;  

HTTP GET; 

[FEATURES] saddr:0.007844194711423388 daddr:0.21179012223785998  

action_scale:2 traffic_scale:0 transport:1 application:1 op:1 

The initial packets refer to the cURL operation initiating the remote JNDI Lookup. The 

last two requests are outgoing traffic from the vulnerable web application to the attacker. 

By leveraging the TC eBPF shallow packet inspection capabilities, the connection string 

is detected and EDR pre-emptively drops the packet(s), disallowing the JNDI Lookup to 

complete. 

4.3.2 Anomaly Detection 

The anomaly detection model is based on a feed-forward neural network, that is, a uni-

directional model flowing input features forward, returning a single prediction result in the 

form of a binary classification. Classification occurs implicitly based on the prediction 

score and the overall network context being analysed. A static threshold (0.09) was 

considered and used throughout to be able to classify network events as normal or ab-

normal (PoC). In an ideal context with continuous prediction and training, this threshold 

shouldn't be static as it depends highly on the nature of the network context and will shift 

with the amount of processed and trained data (Limitation and Future Work). 

In terms of the parameters used to configure the model, these parameters were 

fashioned according to the underlying classification task -- binary classification. In terms 

of the criterion, the loss function used was the Binary Cross-Entropy Criterion with L2 

Regularization. The model's layout was formulated in the same manner throughout 

testing but with varying hidden layers. 

From the EDR's eBPF stack, a total of 7 features are extracted from a network event 

(eBPF Tracing) and fed to the model, resulting in the input layer. Since the model must 

be able to return a single classification result, a single node for the output layer is 

considered. The model's variability and complexity come from the hidden layers. Initially, 
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a larger hidden layer was considered with distributed hidden nodes (i.e.: [7,5,11,3,1] and 

[7,11,5,3,1]). 

- Input Layer: 7 Input nodes - One for each extracted feature. 

- First Hidden Layer: 11 Hidden nodes 

- Second Hidden Layer: 3 Hidden nodes - Categorizing the compilation of features 

into three sub-groups: "Normal", "Anomalous", "Unknown". 

- Output Layer: 1 Output Node - Prediction (Binary) Result 
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5. MODUS OPERANDI 

Source code deployment is analogous for all EDR components, including Intel SGX 

native applications. Source code was conveniently arranged to allow agile deployment 

with an emphasis on modularity.  

 

Figure 21 - Code Structure 

Code arrangements are identical despite both environments being dependent on 

different standard environments in Rust. The native standard environment (i.e., std) in 

Rust is used by the producer, from which most Rust crates are derived. On the other 

hand, SGX environments are dependent on the standard environment imported by the 

SDK provided by the Incubator Teaclave SGX project (i.e., sgx_tstd). The consumer will 

include ‘/sgx/’ where the necessary build scripts are stored and the SDK from Rust (SGX 

code). Each (source-code) directory holds the relevant source code and a build script 

(i.e., build.sh) used for building the application-level code. 

Docker is the primary tool used for provisioning the images ready with Rust and all the 

code following the directory structure above. Dependencies are met to run a 

simultaneous eBPF and SGX development environment under the Linux Ubuntu 20.04 

operating system. Relevant dependencies in these images are the necessary apt 

dependencies (to build the application code) and the bpf-linker tool to support BPF map 

verification, compilation and linkage.  

Wazuh configuration and initialization were officiated manually for relevant testing and 

analysis. Complete configuration of Wazuh is upheld once a Wazuh Agent is configured 

to include system logs from the local Rsyslog framework or remote system logs are 

supported by the Wazuh Manager. The former requires enrollment of the Wazuh Agent 
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with the relevant Manager. While the latter requires configuration to be updated to 

support and initialize a system log listener (requires port specification). Once this is in 

place, the explicit Wazuh Manager requires custom Decoders and Rules to be integrated 

to the triage EDR log messages. Other log messages, such as OS system logs captured 

by the EDR, will automatically be triaged as the syslog protocol is integrated natively in 

Wazuh. 

The last step before running the EDR is adapting its configuration YAML file according 

to the appropriate context. The EDR depends on two configuration parameters, which 

control the interpolation mechanisms offered by the respective eBPF programs. These 

parameters are responsible for controlling the EDR’s behavior throughout runtime. 

 

Figure 22 - Configuration Parameter 

Logger Info is relative to the Log4Shell exploit from first attacker model used to 

reference the HTTP header name where the arbitrary payloads will be placed. The EDR 

Ruleset corresponds to the configuration parameter used to define which type of traffic 

should be blocked (inbound and outbound), based on the condition (1/2). Conditions 

were used to test the distinctive security postures.  

As part of the configuration, RabbitMQ TLS certificates, corresponding private keys and 

user credentials are generated to be able to access the GUI generated by the RabbitMQ 

service. From a security standpoint, in terms of infrastructure, each component of the 

EDR is built in an isolated containerized manner and managed as a micro-service. 

Message queue communication is also secured using the TLS integration mentioned. 
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6. TESTING AND ANALYSIS 

6.1. Log4Shell 

 

Figure 23 - Log4Shell Overview 

Several components and procedures need to be present in order to replicate the 

Log4Shell vulnerability. Logically, the EDR will be safeguarding the SpringBoot web 

application, which is vulnerable to CVE-2021-44228 and running the Java logging library 

log4j2 (Version 2). This web application can be abstracted as a logging instance whose 

sole purpose is to receive and extract logs from the X-Api-Version HTTP Header without 

sanitization before processing the log string.  

Attacker operations reside in using a malicious JNDI/LDAP proxy and sending the 

malicious logging request to the application framework. The malicious proxy is the central 

component responsible for crafting arbitrary Java code that will be requested from the 

logging framework and consequently loaded and executed. Since no sanitization occurs 

and due to the nature of object addressing behind the Log4j Lookup procedure, the 

attacker to craft arbitrary connection string requests to any desired endpoint, allowing for 

RCE. 
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6.1.1. Rogue JNDI/LDAP Application 

The options for the JNDI Exploit JAR file are extensive. Thus they were pruned for brevity 

since only a restricted number of payloads will be considered for this attack scenario. In 

this scenario we will only consider basic queries. 

 

Figure 24 - Malicious proxy 

The simplest form of the payload is a connection string with an arbitrary Base64 encoded 

command. As such, this was the standard structure considered for the payloads, with 

varying connection string (obfuscation techniques) and encoded commands. Only two 

commands were considered: touch /tmp/pwned and a simple reverse shell procedure as 

illustrated below. 

 

Figure 25 - Reverse Shell JNDI Payload 

6.1.2. Attack Vectors 

${jndi:ldap://your-ip:1389/Basic/Command/Base64/dG91Y2ggL3RtcC9wd25lZAo=} 

The simplest type of payload is a base64 encoded command, which is encoded into the 

payload to reduce the possibility of detection. As with all JNDI lookup procedures, this 

payload will be sent to a vulnerable SpringBoot instance running log4j which will process 

the payload and request the defined remote procedure. There may be other variations 
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when it comes to lookup procedures. It is also possible to use remote method invocation 

methods instead of the JNDI protocol. 

 

Figure 26 – Payload Analysis 

6.1.3. Command Interpolations 

 

Figure 27 - Exploit Detection 1 

 

Figure 28 - Exploit Detection 2 

The figures above showcase the EDR's interpolation to the attack and the anomaly 

detector classification to possibly analogous network traffic, considering the features 

extracted from the eBPF tracing stack. From both examples, the EDR's behavior is 

distinct when faced with obfuscation in the payload. Figure 27 considered a simple 

connection string without obfuscation, while Figure 28 considers payload obfuscation. In 

the second example, the EDR is unable to pattern-match the lookup procedure and, as 

such, doesn't proceed to block the malicious request sent from the logger. In Figure 27, 

the whole connection string is matched and as such, the EDR can interpolate the 

malicious request (or the logger's reaction to it). Regarding the anomaly detector, this 

model was previously trained with the 11x7 dataset, as such it is robust to the whole 

connection string and sensitive to variations. The dataset constitutes 11 malicious 

requests sent to the logger with the same payload variations for each request (‘jndi:ldap’). 
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Model adaptability and performance are highly adaptable depending on the disparity of 

data provided by the dataset, which will be used to pre-train the model. 

6.1.4. Command Variants 

 

Figure 29 - Command Variants 

From Figure 29, x is the sequence of "ndi" or "ldap" characters sequentially. Each run 

was repeated consecutively, considering that the dataset is the same for each. The 

anomaly detector is more robust on explicit connection strings. For more complex 

payloads there are cases where the model initially classifies the payloads as anomalies 

but converges after consecutive attempts. 

When it comes to bypassing the EDR, the lookup mechanism procedure (i.e.: (JNDI, 

RMI)) is the main element of the payload that was considered for obfuscation. In this 

figure, (+) represents the regex recursive symbol, "One or more". Since the eBPF tracing 

stack is based mostly on shallow and deep packet inspection pattern matching, complex 

payload obfuscation techniques can bypass run-time interpolation unless stronger 

heuristics are applied (limitation / future work). 
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Figure 30 - Exploit Detection cURL 

This sample run considers 3 logging requests sent to the vulnerable application. As 

expected, the EDR and the model can preemptively identify the attack during run-time, 

but as referred to above, interpolation might occur with some exceptions due to payload 

obfuscation (cURL1 and cURL2). One noticeable consideration is the model’s adaption 

to the network behavior. Over time, with consecutive requests it is expected that the 

model converges, although since the Log4Shell attack procedures require the logger to 

send outbound traffic to a remote endpoint, this is still tracked and classified from the 

model (cURL2 -- HTTP Response, with the rogue JNDI in place the logger would 

explicitly send a HTTP GET request). 

6.1.5. Reporting 

With Wazuh, logs can be analyzed to trace back the EDR's execution as well as 

administer the hosted applications, if needed. Wazuh data can also be extended for 

reporting, where graphs and figures can be created from the logs. Since Rsyslog is used 

to pipe the logs from the EDR to the Wazuh instance, by default Rsyslog will send all the 

other system logs from the EDR's host. This is ideal since host system logs can be cross-

referenced with EDR logs depending on the application and attack context.  
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Figure 31 - Reporting 

Wazuh also allows for various types of reporting, depending on the type of deployment: 

single-node or multi-node. Figure 31 illustrates a count distribution of the number of logs 

received by this instance, according to pre-defined default labels: Top MITRE 

ATT&CKS. With Wazuh, administrators can create their own decoders and rules, so that 

custom logs can be triaged and showcased as illustrated in these figures.  

 

Figure 32 - Logs cross-reference 

From Figure 32 we can distribute and cross-reference the number of EDR logs (5) over 

the number of anomaly detector logs (4). For this sample run, both log types are highly 

correlated resulting in the overlapping curves, as for each EDR log (event), an anomaly 

detection prediction will also be sent as a distinct event. 
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6.2. LDAP 

Figure 33 - LDAP Overview 

The EDR was also formulated for observability purposes, such as enabling the trace of 

low-level information and allowing a basis for customizable logic. Overhead is expected 

and will grow with the increased complexity of packet inspection and pattern-matching 

capabilities. Pattern matching in eBPF is done at the packet level so more granularity 

implies higher latency. Nonetheless for this scenario, heuristics were applied for 

observability purposes. Essentially, they inspect network traffic packets based on LDAP 

operations and other meta-data as per the LDAPv3 Wire Protocol. 

One of the sub-goals from this scenario was to assess and validate whether the 

proposed tool was useful for inspecting and interpolating explicit LDAP operations to an 

arbitrary server to preemptively detect malicious activities such as information-gathering 

strategies. 

It was considered that the model is trained with an arbitrary dataset with no previous 

LDAP operations. Initially, the model returns similar classification results for all LDAP 

traffic, such as abnormal traffic. This can trivially be concluded because the model is 

trained with data that has a high disparity compared to the features being received. It is 

only after a finite number of iterations that the model gradually classifies data as 

expected since it is continuously trained with the data it receives. 
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Figure 34 - LDAP Run 

Following the timestamps and Log IDs, all LDAP response operations are tracked and 

classified. However, since the feed-forward neural network considers a compilation of 7 

input features, with the increased occurrence of these operations as well as the increase 

of traffic flow between the source and destination address, the anomaly detection model 

converges and “learns” from the current network activity as desired.  

Although this convergence from the model isn’t definitive and final, as expected, after 

convergence, LDAP traffic will still be classified as abnormal since a static threshold is 

used for classification (i.e.: >= 0.9), and the initial training dataset has no LDAP 

operations. In this scenario, the model imposes a high sensitivity when classifying traffic, 

which is initially expected since the trained data holds no relevance to this context. 

 

 

Figure 35 - LDAP Detection and Prediction 
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Figure 35 considers the same distribution of commands but without model's classification 

intervention. This figure showcases how the EDR can trace LDAP activity and identify 

and perceive LDAP operations from simple heuristics (data packet size parameter). 
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7. CONCLUSION 

In conclusion, throughout this thesis, we proposed a proof-of-concept tool as a 

foundational building block for EDR solutions tailored to safeguard arbitrary local 

environments. The source-code developed and used throughout this thesis is referenced 

as edrc2u under the branch: thesis-poc hosted in GitHub [5].  

Analysis and verification of the tool's behavior and results were performed using both 

attacker scenarios, as expressed in the Motivation chapter. With the proposed tool, 

verifying the expressed detection and interpolation capabilities was possible, considering 

the "isolated" network assumptions and the appropriate configuration parameters. As per 

the Testing and Analysis chapter, the EDR was successfully positioned in both contexts 

as a central system for detecting, reporting, and interpolating low-level operations 

occurring under the hood. 

7.1. Limitations and Future Work 

Current limitations are enumerated with mitigation proposals for future work 

improvements to the EDR. From a security perspective, eBPF is a critical component as 

it reflects the logic from the heuristics being applied during run-time, which is essentially 

the EDR’s source of truth. This essentially results in Single Point-Of-Failure issues, 

which, in this instance, are critical to the integrity and authenticity of events and alarms 

produced by the EDR. From the highlighted issues, the following mitigations are 

proposed, assuming attacks are directed to the eBPF boundary: 

1. If eBPF reaches an error state or is assumed to be breached, events and/or 

alarms may be tampered with internally (eBPF maps), or new eBPF programs 

may be generated and attached (i.e., eBPF requires System Administrator 

capabilities in the Linux OS). 

Candidate Solution: A multi-producer strategy can be implemented to distribute 

eBPF tracing stacks (i.e., XDP/TC) across multiple nodes to allow the EDR to be 

extendable to support fault-tolerant strategies. eBPF-based LSM capabilities can 

also be developed to enforce isolated environments with regard to system 

capabilities. 

 



FCUP 
EDR: Securing Low-level tracing for intrusion detection 

44 

 
 

2. Currently, A.D. is performed continuously, resulting in the internal dataset 

growing indefinitely. Freshness in the dataset is crucial since it is the only way 

the EDR can adapt to evolving network traffic patterns. 

 

Candidate Solution: Apply transformations and procedures to continuously 

prune the dataset and remove potential noise, although this would require domain 

context information to preemptively classify what explicit traffic is undesirable. 
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