

THE ANNUAL CONGRESS OF THE EUROPEAN FEDERATION OF CORROSION 27-31 AUGUST 2023 BELGIUM, BRUSSELS SQUARE – BRUSSELS MEETING CENTRE

The Effect of Carbon-Based Surfaces on the Development and Structure of Marine Cyanobacterial Biofilms

Romeu M.J.^{1,2}, <u>Lima M.^{1,2}</u>, Gomes L.C.^{1,2}, Jong E.D.d.³, Morais J.⁴, Vasconcelos V.^{4,5}, Pereira M.F.R.^{2,6}, Soares O.S.G.P.^{2,6}, Sjollema J.³, Mergulhão F.J.^{1,2}

¹Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal

²Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

³Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands

⁴Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal

⁵Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal

⁶Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis

Background

Marine biofouling

is a natural and spontaneous process by which submerged structures are colonized by marine organisms¹

Economic and ecological problems

including changes in the physicochemical properties of the surfaces, leading to their rapid deterioration and corrosion²

frequently
associated with

The **adhesion** and **biofilm formation** by microfoulers such as cyanobacteria³ - one of the **first steps** of marine biofouling

The development of novel and environmentally friendly antibiofilm strategies,

such as the manufacture of innovative nanocomposite coatings, is required

among different nanocomposites

Carbon nanotubes (CNTs)

have been widely used due to their **mechanical strength**, **structural stability**, and

This work aimed to (i) **produce** and **characterize CNT-based surfaces**, and (ii) **evaluate** their **antifouling performance** against marine cyanobacterial biofilms under

antimicrobial and anti-adhesive activities⁴

conditions that mimic marine environments

Material and Methods

Surface Preparation and Characterization

- Control surfaces: glass and glass coated with epoxy resin; CNT composite: epoxy resin with 3% (w/v) Multi-Walled CNTs
- CNT surfaces: produced by spin coating and analyzed by Scanning Electron Microscopy (SEM)

Biofilm Assays

Biofilm Formation

Filamentous cyanobacterial strain:

Nodosilinea cf. nodulosa LEGE 10377

- 12 well-plates for 49 days at 25 °C
- Shear rate of 50 s⁻¹; 14 h light/10 h dark cycles

Biofilm Analysis

- SEM Morphology
- Wet weight
- Optical Coherence Tomography (OCT)
 - Biovolume, thickness, porosity, structure

Results

The **CNT composite** had the **roughest** and most **heterogeneous** surface, presenting CNT **agglomerates**

SEM images of glass, epoxy resin, and CNT surfaces. Magnification = 100×; scale bar = 100 µm.

Wet weight and biovolume of Nodosilinea cf. nodulosa LEGE 10377 biofilms developed on different surfaces (glass - black, epoxy resin - grey, CNT composite - white).

Biofilm wet weight and biovolume gradually

CNT-modified surfaces can **delay biofilm**

| Results

Representative 3D (**a-c**) and 2D cross-sectional (**d-f**) OCT images of *Nodosilinea* cf. *nodulosa* LEGE 10377 biofilms on controls and CNT composite after 49 days. The empty spaces in 2D biofilm structures (**d-f**) are filled in blue (scale bar = 100 µm).

Visible differences in biofilm structures: while those formed on control surfaces had more prominent and irregular structures, biofilms developed on CNT composite were flatter and more homogeneous Biofilms formed on **CNT-based surfaces** showed **lower thickness**, **percentage** and **mean size** values of **empty spaces** compared to glass and epoxy resin surfaces

While biofilms formed on the control surfaces showed dense filamentous networks, biofilms developed on CNT-based surfaces presented lowerdensity cell aggregates

SEM images of *Nodosilinea* cf. *nodulosa* LEGE 10377 biofilms formed on glass, epoxy resin, and CNT composite after 49 days. The red arrows indicate clusters of CNTs. Magnification = 1000×; scale bar = 10 µm.

Conclusions

- CNT-based surfaces showed an antifouling activity against Nodosilinea cf. nodulosa LEGE 10377.
- Biofilms formed on CNT surfaces presented more homogeneous, flatter, less porous, and tightly packed structures compared to those formed on control surfaces.
- The incorporation of carbon nanotubes into polymeric matrices showed to be a promising approach to delay cyanobacterial biofilm development and reduce biofouling consequences.

| References

- 1. Faria, S.I., et al., Experimental Assessment of the Performance of Two Marine Coatings to Curb Biofilm Formation of Microfoulers. Coatings, 2020.10.
- 2. Amara, I., et al., Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ Toxicol Pharmacol, 2018. 57, 115-130.
- 3. Romeu, M.J., et al., The Use of 3D Optical Coherence Tomography to Analyze the Architecture of Cyanobacterial Biofilms Formed on a Carbon Nanotube Composite. Polymers (Basel), 2022. 14(20).
- 4. Teixeira-Santos, R., et al., Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: A systematic review. iScience, 2021. 24(1), 102001.

Acknowledgments

This work was financially supported by: LA/P/0045/2020 (ALiCE), UIDB/00511/2020 and UIDP/00511/2020 (LEPABE) funded by national funds through the FCT/MCTES (PIDDAC); project HealthyWaters (NORTE-01- 0145-FEDER-000069) supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); project EMERTOX (grant 734748), funded by H2020-MSCA-RISE 2016; Strategic Funding UIDB/04423/2020 and UIDP/04423/2020 through national funds provided by the Foundation for Science and Technology (FCT) and the European

