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Abstract: Like other plastic materials, geosynthetics can undergo changes in their properties due to 

weathering. These changes must be known and, if necessary, duly accounted for in the design phase. 

This work evaluates the resistance of a nonwoven polypropylene geotextile to weathering, both in 

the field (under natural degradation conditions) and in the laboratory (under accelerated degrada-

tion conditions). The damage experienced by the geotextile in the field weathering tests was evalu-

ated by monitoring changes in its physical (mass per unit area and thickness), mechanical (tensile, 

tearing and puncture behaviour) and hydraulic (water permeability normal to the plane) properties. 

Microscopic damage was assessed by scanning electron microscopy. In the laboratory weathering 

tests, only the tensile behaviour of the geotextile was monitored. The results showed that all geotex-

tile properties were affected by weathering. The mechanical strength of the geotextile decreased in 

the field weathering tests. Microscopic transverse cracks were found in the weathered polypropyl-

ene fibres, which may explain the reduction in mechanical strength. The accumulation of dirt on the 

nonwoven structure altered the physical and hydraulic properties of the geotextile. Comparing the 

field and laboratory weathering tests, the reduction in tensile strength found after 24 months out-

doors (roughly 30%) was very similar to that observed after 4000 h in the laboratory. This relation-

ship may not be valid for other geotextiles or other exposure locations. 

Keywords: geosynthetics; geotextiles; durability; weathering; UV-ageing; polypropylene;  

Chimassorb 944; carbon black 

 

1. Introduction 

Geosynthetics are construction materials mostly manufactured from thermoplastics, 

such as polyolefins (e.g., polypropylene (PP)) or polyesters. These materials are not only 

easy to use but also cost-effective, which, combined with their versatility and good per-

formance over time, makes them suitable materials for many engineering applications. 

According to their structure, geosynthetics can be divided into different categories, the 

most common being geotextiles, geomembranes, geogrids and geocomposites. Geotextiles 

are the most used geosynthetics, being able to perform several functions, including filtra-

tion, drainage, separation, protection and reinforcement. The applications of these mate-

rials are numerous, having been successfully used, for example, in road infrastructure, 

erosion control, drainage systems, waste containment and coastal protection structures. 

Like other plastic materials, geotextiles are prone to degradation at all stages of their 

life cycle, including manufacture, storage, installation phase and in-service. These mate-

rials typically have high resistance to chemical and biological attack [1], but are suscepti-

ble to solar radiation, mainly ultraviolet (UV) radiation [2,3]. The UV zone (≈295 to 400 

nm) corresponds to only a small part of the solar radiation reaching the Earth’s surface 

(≈295 to 3000 nm), but it is the one with the highest energy. Other outdoor degradation 

agents include heat, oxygen and moisture [4]. 
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Photo-oxidation is the degradation of polymers induced by the combined action of 

light and oxygen [5,6]. In the case of PP, the oxidation process occurs via an autocatalytic 

mechanism with initiation, propagation, branching and termination reactions [3,7]. The 

initiation reaction requires an energy source for the formation of free radicals, which start 

the mechanism. Energy can be provided by heat (thermo-oxidation) and by UV radiation 

(photo-oxidation). More information on the oxidation process of PP can be found, for ex-

ample, in Greenwood et al. [3]. 

Chemical additives, which are added to polymers during processing, can be used to 

control the photo-oxidation of plastic materials [5,8]. These compounds can interrupt or 

slow down the degradation process, being essential to improve the weathering resistance 

of polymeric products. Examples of effective additives include light stabilisers and anti-

oxidants. As shown in previous works [9–11], the weathering resistance of PP geotextiles 

can be highly enhanced by the presence, in relatively small amounts, of a hindered amine 

light stabiliser or carbon black. 

Predicting the behaviour of geotextiles over time is a complicated process, as it usu-

ally requires many aspects to be considered. The predictions are often based on material 

testing, where they are exposed to degrading conditions. Over the years, standards organ-

isations, such as the European Committee for Standardization or the American Society for 

Testing and Materials, have developed methods to help evaluate the resistance of geotex-

tiles to degradation. In the case of weathering, the methods developed for geotextiles in-

clude EN 12224 [12], ASTM D4355 [13] and ASTM D5970 [14]. 

Weathering tests can be conducted in the field or in the laboratory. In the field, ma-

terials degrade under natural conditions, providing accurate information about their be-

haviour. The downside is that the tests are usually time-consuming—they can take years 

[10,11,15]. In the laboratory, artificial weathering tests under accelerated degradation con-

ditions can be carried out in weatherometers. This equipment tries to simulate the degra-

dation suffered by materials exposed outdoors, usually allowing control of the light in-

tensity, temperature and humidity. 

Over the years, researchers have evaluated the resistance of geotextiles to weathering 

by performing field [10,11,15–18] or laboratory [9,19–21] tests. Some works [22–25] carried 

out both tests, comparing the results obtained and trying to find relationships between 

them. The effect of weathering tests on geotextiles is usually evaluated by detecting and 

quantifying changes in their properties. Tensile properties have been monitored in many 

works [9–11,15–17,21,24], being the most used for this purpose. Technics such as micros-

copy [9,10,15,20,21,24], spectrophotometry [25], infrared spectroscopy [22], thermal anal-

ysis [15,20,21] and chromatography [22,23] have also been used to determine the effect of 

weathering on geotextiles. 

The results of previous works have shown that it is practically unavoidable for geo-

textiles to degrade when exposed to weathering for a long period of time. If permanently 

exposed, the lifetime of these materials (often measured by the deterioration of their ten-

sile behaviour) can range from a few months to a few years [10,11,15–17,24]. Field weath-

ering tests on an unstabilised PP geotextile revealed that degradation occurs relatively 

fast, with a reduction in tensile strength close to or greater than 50% after 6 months [10,11]. 

By month 12, the unstabilised PP geotextile was extremely damaged (reduction in tensile 

strength of around 94% or more) [10,11]. For stabilised materials, degradation is slower. 

In a previous work [10], reductions in tensile strength ranging from 39 to 82% were re-

ported for three PP geotextiles with different stabilisation packages exposed to natural 

weathering for 36 months. In another work [15], a PP geotextile experienced a reduction 

in tensile strength of 84%, also after 36 months. 
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In many applications, geotextiles are exposed to UV radiation and other weathering 

agents for a short period of time, corresponding to the time required for installation activ-

ities. Indeed, to perform some functions (e.g., separation, filtration or drainage) the mate-

rials must be covered. To prevent premature failure, the uncovered use of these materials 

is often limited by setting a maximum allowable time (which can be determined from the 

results of an artificial weathering test, such as EN 12224 [12]). In some cases (e.g., in rein-

forcement applications), the mechanical properties of geotextiles can be affected by reduc-

tion factors to account for degradation. There are some cases, for example in reservoirs, 

where the materials can be exposed to weathering for long periods of time, sometimes for 

their entire service life. In this situation, laboratory tests such as EN 12224 [12] do not 

provide information that allows estimating the lifetime of geotextiles. Laboratory meth-

ods to simulate long-term weathering in a short period of time are not available. The ex-

isting methods can be extended, and their conditions modified to represent more demand-

ing scenarios, but establishing laboratory–field relationships has proven to be hard to ac-

complish. 

This work studies the weathering resistance of a nonwoven PP geotextile, both under 

natural and accelerated degradation conditions. The main goals of the work included: (1) 

determine not only how the tensile properties of the geotextile were affected by natural 

weathering, but also how other mechanical properties, as well as physical and hydraulic 

properties, were affected, and (2) compare the degradation suffered by the geotextile out-

doors and in the laboratory, looking for relationships between natural and artificial 

weathering. 

2. Materials and Methods 

The experimental campaign of this work included subjecting a geotextile to weather-

ing under natural degradation conditions. After that, the physical (mass per unit area and 

thickness), mechanical (tensile, tearing and static puncture behaviour) and hydraulic (wa-

ter permeability normal to the plane) properties of the geotextile (exposed samples) were 

evaluated and compared to those obtained before degradation (unexposed sample). Scan-

ning electron microscopy (SEM) was used to analyse the nonwoven structure before and 

after exposure to natural weathering. Laboratory weathering tests (under accelerated deg-

radation conditions) were also conducted, and the results (only tensile strength) were 

compared to those found under natural degradation conditions. 

2.1. Geotextile 

A nonwoven geotextile (designated as GT500 in this article) was studied in this work. 

GT500 was made by needle punching using PP fibres stabilised with two chemical addi-

tives: Chimassorb 944 (a hindered amine light stabiliser) and carbon black (a pigment that 

can also protect polymers from UV attack). Chimassorb 944 and carbon black were present 

in the PP fibres with the mass percentages of 0.2% and 1.08%, respectively. Accordingly, 

the fibres had a PP mass percentage of 98.72%. The manufacturer stated that GT500 had a 

mass per unit area of 500 g·m−2. GT500 was anisotropic, with its tensile and tearing prop-

erties being direction-dependent (tensile and tearing strength were higher in the machine 

direction of production than in the cross-machine direction of production). 

GT500 was supplied as a roll and the procedures for sampling and preparation of test 

specimens were conducted in accordance with the guidelines of EN ISO 9862 [26]. Speci-

mens were taken for two purposes: (1) for exposure to weathering (in the field and in the 

laboratory), and (2) for physical, mechanical and hydraulic characterisation of GT500 be-

fore weathering. The specimens exposed to weathering tests were also later characterised 

by physical, mechanical and hydraulic tests. 
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2.2. Field Weathering Tests 

GT500 was exposed to weathering under natural degradation conditions in Portugal. 

The latitude and longitude coordinates of the exposure site were, respectively, 41°13′ N 

and 8°39′ W. The altitude was 49 metres. GT500 was installed in an exposure stand facing 

south with an inclination of 30°. The tests lasted for 24 months, with samples collected for 

characterisation at 6, 12, 18 and 24 months. 

The air temperature, solar radiant energy (between 300 and 3000 nm), precipitation 

and relative humidity were registered during the outdoor exposure (Table 1). For the dif-

ferent exposure periods, the data shown in Table 1 correspond to average values of air 

temperature and relative humidity (TAir and RH, respectively) and accumulated values of 

solar radiant energy (E), UV radiant energy (EUV) and precipitation (P). Based on the in-

tervals given by EN 13362 [27] and Greenwood et al. [3], which are respectively 6–9% and 

5–10%, UV radiant energy has been estimated to be 7.5% of solar radiant energy—7.5% 

corresponds to the average value of both intervals. 

Table 1. Climate parameters of the exposure site. (Notation: TAir—average air temperature; E—ac-

cumulated solar radiant energy; EUV—accumulated UV radiant energy; P—accumulated precipita-

tion; RH—average relative humidity). 

Period (Months) TAir (°C) E 1 (MJ·m−2) EUV 2 (MJ·m−2) P (mm) RH (%) 

1–6 14.0 2189 164 318 72.3 

7–12 21.6 3423 257 256 70.5 

13–18 14.5 534 40 547 74.7 

19–24 20.3 3329 250 460 74.5 
1 Measured between 300 and 3000 nm. 2 Obtained by estimate—7.5% of the accumulated solar ra-

diant energy. 

Two types of specimens were prepared for the field weathering tests: (1) type I, with 

a width of 200 mm and a length of 300 mm. The top and bottom 100 mm (in length) were 

used for gripping to the exposure stand and were protected from weathering. These spec-

imens were intended for subsequent tensile tests; (2) type II, which had a width of 250 mm 

and a length of 400 mm—exposed length of 300 mm (the top and bottom 5 mm were used 

for gripping to the exposure stand). At the end of the outdoor exposure, the type II speci-

mens were reduced in size (by cutting) in order to have adequate dimensions for mass per 

unit area, thickness, tearing, static puncture or water permeability normal to the plane 

tests. They were also used to collect specimens for SEM analysis. 

2.3. Laboratory Weathering Tests 

GT500 was exposed to artificial weathering in a testing equipment from Q-Panel Lab 

Products (Westlake, OH, USA)—the QUV Weathering Tester, model QUV/spray. This ap-

paratus allows exposing materials to weathering cycles composed of three steps: exposure 

to UV radiation, simulating the effect of sunlight (UV step), water spray and condensation 

(these last two simulating the effect of rain and moisture). The UV and condensation steps 

are conducted at elevated temperatures in order to accelerate the degradation process and, 

thereby, allow results to be obtained in a relatively short period of time. 

The laboratory weathering tests involved the exposure of GT500 to UV radiation, 

water spray and condensation. UV radiation was provided by UVA-340 lamps. The water 

used in the spray step was treated microbiologically, purified by reverse osmosis and, 

finally, deionised in ionic exchange columns. Water was sprayed at room temperature 

with a flow of 5 L·min−1. The condensation step used water from the public supply net-

work, which upon heating produced water vapour that condensed on the surface of the 

exposed specimens. Both the water spray and condensation steps were carried out in the 

dark, i.e., the UVA-340 lamps were turned off. 
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Two different tests were performed using GT500: (1) tests following, as closely as 

possible, the method described in EN 12224 [12], and (2) adapted tests. The main charac-

teristics of the weathering cycles used in those tests can be seen in Table 2. 

Table 2. Main characteristics of the weathering cycles. 

Test Weathering Cycle Temperature (°C) Duration (Hours) 

Standard 
Step 1. UV 50 5 

Step 2. Water spray 1 - 0.167 

Adapted 

Step 1. UV 60 4 

Step 2. Water spray - 0.167 

Step 3. Condensation 1  45 4 
1 After this step, the system returns to step 1. 

GT500 was exposed to around 70 weathering cycles, each lasting for 5 h and 10 min, 

during the 362 h of the EN 12224 [12] test. Each weathering cycle was composed of a UV 

step (5 h at 50 °C) followed by a water spray step of 10 min. The duration of the water 

spray step was shorter than that specified in EN 12224 [12], which is 60 min. This change 

was necessary due to the water purification system, which was not able to produce 

enough water for continuous spraying for 60 min—good quality water is needed to avoid 

clogging the sprinklers of the weatherometer. At a flow of 5 L·min−1, 60 min of spray 

would require 300 L of purified water every 5 h (time period corresponding to the UV 

step interspersed with the water spray step). This modification in the EN 12224 [12] test 

conditions allowed a reduction in water consumption with a low expected impact on the 

results since it is well-known that UV radiation is the most harmful weathering agent for 

plastic materials. The UVA-340 lamps operated with an irradiance of 0.68 W·m−2. The total 

radiant energy during the 362 h of testing was 50 MJ·m−2 between 290 and 400 nm, which 

is the value specified in EN 12224 [12]. 

Regarding the adapted tests, GT500 was exposed to a weathering cycle for different 

periods of time, namely 500, 1000, 2000 and 4000 h. As shown in Table 2, the weathering 

cycle was composed of a UV step (4 h at 60 °C), followed by a water spray step (10 min) 

and a condensation step (4 h at 45 °C). As in the EN 12224 [12] test, the UVA-340 lamps 

operated with an irradiance of 0.68 W·m−2. The total radiant exposure at 340 nm (E340nm) 

and the total UV (290–400 nm) radiant exposure, EUV, increased with the increase of the 

test duration (greater number of weathering cycles, N), as can be observed in Table 3. 

Table 3. The number of weathering cycles and total radiant exposure for the different laboratory 

weathering tests. (Notation: N—number of cycles; E340nm—total radiant exposure at 340 nm; EUV—

total UV radiant exposure). 

Test Time (Hours) N E340nm (MJ·m−2) EUV (MJ·m−2) 

Standard 362 70.1 0.86 50 

Adapted 

500 61.2 0.60 35 

1000 122.4 1.20 69 

2000 244.9 2.40 138 

4000 489.8 4.80 276 

The specimen holders of the weatherometer had an area to expose specimens 80 mm 

wide by 200 mm long. This way, the specimens used in the laboratory weathering tests 

had a width of 50 mm and a length of 400 mm—the top and bottom 100 mm, in length, 

were not exposed. These dimensions are compatible with tensile tests according to EN 

29073-3 [28]—the resistance of GT500 to artificial weathering was only evaluated by mon-

itoring changes in its tensile behaviour. 
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2.4. Evaluation of the Damage Suffered by GT500 

Following the weathering tests, the physical, mechanical and hydraulic properties of 

GT500 were determined. In addition, a microscopic analysis of GT500 was performed. The 

results obtained for the weathered samples were compared with those found for an unex-

posed sample (intact) and, based on the changes that occurred in the properties of GT500, 

the damage caused by weathering was evaluated. The physical, mechanical and hydraulic 

properties of GT500 were determined following standard methods (Sections 2.4.1–2.4.6). 

The number of specimens used in each test was defined by the respective test standard. 

Furthermore, in all characterisation tests, and for each weathering period, fresh specimens 

were used, i.e., there was no reuse of specimens in the non-destructive tests. 

The results (average values of at least 5 or 10 specimens, as will be indicated below) 

are presented with 95% confidence intervals. In addition, some results are expressed in 

terms of variation: ∆X, where X generically represents a property. ∆X was determined in 

accordance with Equation (1): 

∆X = 
X(Exposed)  −  X(Unexposed)

X(Unexposed)
× 100 (1)

where X(Unexposed) and X(Exposed) is a property of GT500 obtained, respectively, before and af-

ter the weathering tests. Using Equation (1), variations were determined for mass per unit 

area (∆µA), thickness (∆t), tensile strength (∆T), tearing strength (∆FR), puncture strength 

(∆FP) and velocity index for a head loss of 50 mm (∆VH50). 

2.4.1. Mass per Unit Area Tests 

Mass per unit area (µA, in g·m−2) was determined by measuring and weighing square 

specimens (side of ≈ 100 mm) of GT500. The specimens were measured with a calliper and 

weighed on an AND (Tokyo, Japan) balance (model HF 300G). For each sample, at least 

ten specimens were tested. The tests followed the guidelines of EN ISO 9864 [29]. 

2.4.2. Thickness Tests 

Thickness tests were conducted according to EN ISO 9863-1 [30]. Thickness (t, in mm) 

was measured as the distance between a reference plate (where the specimen was placed) 

and the contacting face of a circular presser foot. For each sample, a minimum number of 

ten specimens was tested (square specimens with a side of 100 mm). The pressure exerted 

on the specimens was 2 kPa. A Karl Schröder KG (Weinheim, Germany) testing equip-

ment was used in the thickness tests. 

2.4.3. Tensile Tests 

Two different methods were used in the tensile tests, depending on the origin of the 

samples. For the samples exposed to natural weathering, tensile tests were carried out 

following the EN ISO 10319 [31] method. The EN 29073-3 [28] method was used for the 

samples exposed to artificial weathering. The need for two methods was due to the char-

acteristics of the laboratory weatherometer, whose specimen holders did not allow using 

specimens with the same dimensions as those used in the field weathering tests. 

 The tensile tests were performed in a Lloyd Instruments (Bognor Regis, UK) testing 

machine (model LR 50K). These tests were carried out at different displacement rates, de-

pending on the testing method: 20 and 100 mm·min−1 for the EN ISO 10319 [31] and EN 

29073-3 [28] methods, respectively. In both methods, at least five specimens from each 

sample were tested (specimens tested in the machine direction of production). The speci-

mens that were subjected to the EN ISO 10319 [31] method had a length of 100 mm (be-

tween grips) and a width of 200 mm. In the other method, the specimens were 200 mm 

long (between grips) and 50 mm wide. Figure 1 schematically represents the specimens 

used in the tensile tests, as well as those used in the tearing (Section 2.4.4) and static punc-

ture (Section 2.4.5) tests. 
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Figure 1. Schematic representation of the specimens used in: (a) tensile tests according to EN ISO 

10319 [31]; (b) tensile tests according to EN 29073-3 [28]; (c) tearing tests; (d) static puncture tests. 

The roll arrows indicate the machine direction of production. The gripping area is indicated in grey. 

Tensile force (F, in N) and elongation were continuously monitored during the tensile 

tests. Tensile strength (T, in kN·m−1), i.e., the maximum tensile force per unit width, was 

calculated by Equation (2): 

T = 
F���

1000
×

1

B
 (2)

where Fmax corresponds to the maximum tensile force (in N) and B is the width (in m) of 

the specimen. Elongation at tensile strength (ET, in %) was also an output of the tensile 

tests. Regardless of the tensile test method, elongation was measured based on the relative 

displacement of the grips, representing the percentage increase in the length of the speci-

mens in relation to their original length (i.e., the initial distance between grips). 

2.4.4. Tearing Tests 

The tearing tests were carried out according to ASTM D4533 [32] on the same testing 

machine used for the tensile tests. For each sample, at least ten specimens (in the machine 

direction of production) were tested. The specimens were rectangular (76 mm wide and 

200 mm long) and had an isosceles trapezoid (25 and 100 mm, respectively, at the top and 

at the base) marked on the centre (area between grips) (Figure 1c). Before the test, a 15 mm 

cut was made in the middle of the 25 mm side (cut perpendicular to the parallel sides of 

the trapezoid). Test velocity was 300 mm·min−1. Tearing strength (FR, in N), i.e., the maxi-

mum tearing force, was the property determined in the tearing tests. 

2.4.5. Static Puncture Tests 

The static puncture tests followed the guidelines of EN ISO 12236 [33] and were con-

ducted on the same testing machine used for the tensile and tearing tests. In these tests, a 

plunger (stainless steel cylinder with a diameter of 50 mm) was pushed through circular 

specimens (diameter of 150 mm between grips) at a velocity of 50 mm·min−1 (Figure 1d). 

For each sample, a minimum number of five specimens was tested. The properties deter-

mined in the static puncture tests were puncture strength (FP, in kN) (maximum puncture 

force) and push-trough displacement at maximum force (hP, in mm). 
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2.4.6. Water Permeability Normal to the Plane Tests 

The water permeability normal to the plane tests were carried out according to the 

constant head method of EN ISO 11058 [34]. The specimens (five for each sample) were 

submitted to a unidirectional flow of water under a series of constant head losses, H—14, 

28, 42, 56 and 70 mm. Circular specimens with a useful diameter (area exposed to the flow 

of water) of 83.5 mm were used. The tests were conducted on prototype equipment de-

veloped at the Faculty of Engineering of the University of Porto, Portugal, in accordance 

with the instructions of EN ISO 11058 [34] (Figure 2). The equipment had the following 

main components: a water reservoir, a piping system, a flow controller, a head loss read-

ing system, a specimen mount and a water collector. The internal diameter of the piping 

system was 83.5 mm. 

 

Figure 2. Schematic representation of the equipment used in the water permeability normal to the 

plane tests (the water course is indicated by arrows). 

The hydraulic property obtained in the test was the velocity index for a head loss of 

50 mm (VH50, in mm·s−1). To calculate VH50, the velocity index at 20 °C (v20, in mm·s−1) was 

first determined for each of the head losses H. The determination of v20 followed Equation 

(3), where V is the volume of water (in mm3) collected during the time interval t (in s), RT 

is a correction factor for a water temperature of 20 °C (RT calculated as indicated in EN 

ISO 11058 [34]) and A is the exposed area (in mm2) of the specimens. 

��� = 
V R�

A t
 (3)

The head losses H (from 14 to 70 mm) were plotted as a function of the respective v20 

and a quadratic curve that passed through the origin of the graph was fitted to the data. 

The VH50 was obtained by interpolation in the quadratic regression curve. 

2.4.7. Scanning Electron Microscopy 

The SEM analyses were conducted on a JEOL (Tokyo, Japan) electronic microscope 

(model JSM 6310F) equipped with a secondary electron detector. The specimens of GT500 

(area of about 1 cm2) were metallized with a layer of gold to make them electrically con-

ductive. 
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3. Results and Discussion 

3.1. Natural Weathering 

3.1.1. Physical Properties 

The colour of GT500, originally black, did not change significantly over the 24 months 

of field exposure. However, GT500 became noticeably stiffer, which can be explained by 

the accumulation of dirt (small particles, e.g., dust, brought by the wind or rain) on its 

nonwoven structure. The dimensions of the exposed specimens remained practically un-

changed. Table 4 summarizes the results obtained for the mass per unit area and thickness 

of GT500 before and after the field weathering tests. 

Table 4. Physical properties of GT500 before and after the field weathering tests. (Notation: µA – 

mass per unit area; ∆µA – variation in mass per unit area; t – thickness; ∆t – variation in thickness). 

Time (Months) µA (g·m−2) ∆µA (%) t (mm) ∆t (%) 

0 499 ± 27 - 3.68 ± 0.06 - 

6 506 ± 14 +1.4 3.84 ± 0.06 +4.3 

12 545 ± 25 +9.2 4.02 ± 0.06 +9.2 

18 576 ± 31 +15.4 3.92 ± 0.13 +6.5 

24 542 ± 23 +8.6 4.05 ± 0.06 +10.1 

An analysis of Table 4 shows that the mass per unit area of GT500 had no relevant 

changes after 6 months (∆µA of +1.4%). However, for longer periods, an increase in mass 

per unit area was observed (maximum ∆µA of +15.4% after 18 months). This may seem like 

an odd result, but it can be explained by the dirt that had accumulated on the nonwoven 

structure of GT500, which is inevitably being taken into account in the mass per unit area 

test. Therefore, this increase should be seen as a “false increase” as it obviously does not 

represent a real gain in polymeric mass. It is also relevant to mention that the dirt did not 

accumulate on top of the specimens but filled the empty spaces that existed between the 

PP fibres. 

Like the mass per unit area, the thickness of GT500 also increased after natural weath-

ering. The increases were relatively small, ranging between 4.3 and 10.1%, with no clear 

relationship between the magnitude of the increase and the exposure time. The reason for 

the increase in thickness is the same as previously mentioned for the increase in mass per 

unit area. The accumulation of dirt on the nonwoven structure has made the material less 

compressible and, as thickness is determined by applying pressure (in this case, 2 kPa), 

this resulted in greater thickness. 

3.1.2. Mechanical Properties 

The exposure to natural weathering also had an impact on the mechanical properties 

of GT500. However, the changes that occurred varied with the exposure time and did not 

occur on the same scale for all properties. The tensile, tearing and puncture properties of 

GT500, before and after the field weathering tests, can be seen in Table 5. 

The tensile strength of GT500 (∆T of +1.2%) was practically unchanged after 6 months 

of natural weathering. The increase in exposure time from 6 to 12 months resulted in a 

decrease in tensile strength (∆T of −18.6%). Further decreases, namely of 33.3 and 30.2%, 

were observed after 18 and 24 months, respectively. Comparing these last two periods, 

the average value of tensile strength was slightly higher after 24 months than after 18 

months. However, the dispersion associated with the value obtained for 18 months was 

relatively high, as shown in Table 5. The elongation at tensile strength of GT500 decreased 

after all exposure times, with the greatest reduction (from 116.8 to 36.8%) being found 

after 24 months. As will be seen in Section 3.1.4, SEM analysis will contribute to explaining 

the reason for the degradation of the tensile behaviour (and also the tearing and puncture 

behaviour) of GT500. 
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Table 5. Mechanical properties of GT500 before and after the field weathering tests. (Notation: T—

tensile strength; ET—elongation at tensile strength; FR—tearing strength; FP—puncture strength; 

hP—push-trough displacement at maximum force). 

Time 

(Months) 
T (kN·m−1) ET (%) FR (N) FP (kN) hP (mm) 

0 25.58 ± 0.85 116.8 ± 3.3 572 ± 41 2.51 ± 0.19 63.3 ± 0.7 

6 25.89 ± 2.47 93.4 ± 6.5 305 ± 30 2.42 ± 0.19 52.7 ± 1.2 

12 20.81 ± 1.02 50.6 ± 3.9 223 ± 26 1.90 ± 0.14 47.5 ± 0.4 

18 17.07 ± 3.57 50.5 ± 5.1 232 ± 23 1.89 ± 0.26 45.8 ± 2.9 

24 17.86 ± 1.25 36.8 ± 1.4 202 ± 23 1.68 ± 0.19 45.4 ± 2.4 

Like tensile strength, the tearing strength of GT500 also experienced relevant changes 

during outdoor exposure. However, the variations found in tearing strength had some 

differences compared to those observed in tensile strength, showing that these properties 

were affected differently by weathering. Tearing strength experienced a considerable and 

rapid decrease in the early months of exposure. Indeed, just after 6 months, this property 

was reduced by almost half (∆FR of −46.7%). Increasing the exposure time to 12 months 

led to a more marked reduction in tearing strength (∆FR of −61.0%). However, after 12 

months, no further meaningful decreases were observed (∆FR of −59.4 and −64.7% after 18 

and 24 months, respectively). 

The puncture strength of GT500 was also affected by the outdoor exposure, as were 

the tensile and tearing strengths. This property was almost unchanged after 6 months (∆FP 

of −3.6%) but changes were noticeable after 12 months (∆FP of −24.3%). The increase in the 

exposure time tended to result in further, although not very pronounced, reductions in 

puncture strength (∆FP of −33.1% after 24 months). The push-trough displacement at max-

imum force of GT500 also decreased after weathering, with the highest reduction (28.3%) 

found after 24 months. 

Contrary to the physical characterisation tests, the mechanical tests revealed that the 

outdoor exposure induced some damage to GT500, which resulted in the deterioration of 

its mechanical behaviour. The changes found in the tensile, tearing and puncture 

strengths of GT500 were not the same. As illustrated in Figure 3, which compares the var-

iations in the previous properties over time, tearing strength was much more affected than 

tensile or puncture strengths. Indeed, after 6 months, a 46.7% reduction in tearing strength 

had already occurred, while the other two properties had no remarkable changes com-

pared to their original values (∆T and ∆FR of, respectively, +1.2 and −3.6%). For longer 

exposure times, the reductions observed in tearing strength were always higher than those 

found in the tensile or puncture strengths. Another important conclusion to be drawn 

from Figure 3 is that, with some relatively small differences, the reductions in tensile 

strength tended not to be very different from those in puncture strength. Indeed, these 

properties were more or less identically affected by natural weathering. This result agrees 

with that observed by Carneiro and Lopes [10]. It also corroborates the existence of a re-

lationship between the tensile strength and puncture strength of nonwoven geotextiles, 

as reported by Cazzuffi et al. [35]. However, GT500 was anisotropic and the relationship 

between these two properties did not follow the empiric equation proposed by Cazzuffi 

et al. [35], which is intended for isotropic nonwoven geotextiles and indicates that tensile 

strength (in kN·m−1) can be estimated by multiplying puncture strength (in N) by 2π. As 

additional information, it should be mentioned that this equation involves puncture 

strength values determined according to the method described in EN ISO 12236 [33]. 
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Figure 3. Reduction (in percentage) of mechanical strength over time. (Notation: T—tensile strength; 

FR—tearing strength; FP—puncture strength). 

3.1.3. Hydraulic Properties 

As with the previous physical and mechanical properties, the water permeability be-

haviour of GT500 was also affected by natural weathering. Figure 4 illustrates the mean 

quadratic curves H = f (v20) obtained for GT500 before and after the field weathering tests. 

The values found for VH50 are summarised in Table 6. 

 

Figure 4. Mean curves head loss vs. v20 of GT500, before and after the field weathering tests. 
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Table 6. VH50 of GT500 before and after the field weathering tests. (Notation: VH50—velocity index 

for a head loss of 50 mm; ∆VH50—variation in VH50). 

Time (Months) VH50 (mm·s−1) ∆VH50 (%) 

0 39.4 ± 5.0 - 

6 20.3 ± 6.0 −48.5 

12 26.1 ± 7.4 −33.8 

18 30.2 ± 9.7 −23.4 

24 23.7 ± 8.1 −39.8 

The exposure to natural weathering had a significant impact on the VH50 of GT500. 

After 6 months, the value of this property was 20.3 mm·s−1, configuring a decrease to al-

most half (∆VH50 of −48.5%) of its original value. The tests with higher exposure times also 

induced variations in VH50, but in all cases the values obtained were lower than the original 

value (∆VH50 between −23.4 and −39.8% for the samples exposed for 12, 18 and 24 months). 

As can be concluded from the analysis of Table 6, there was no relationship between the 

increase in exposure time and the change in VH50. 

The reduction in the VH50 of GT500 can be explained by the dirt present in its nonwo-

ven structure. Dirt accumulated over time can fill or clog the free spaces between the fibres 

of nonwoven geotextiles, and hence make it more difficult, or even prevent, the flow of 

water. Therefore, the accumulated dirt, while not expected to cause chemical or biological 

damage to the polymeric structure, can significantly affect the water permeability behav-

iour normal to the plane of nonwoven geotextiles. This way, weathering can influence the 

ability of these materials to act as filters. In this case, it may be relevant to study the be-

haviour of nonwoven geotextiles for shorter exposure times (e.g., 1 month), compatible 

with the expected outdoor exposure in most applications where the materials have a filter 

function. 

3.1.4. SEM Analysis 

In addition to monitoring changes in its physical, mechanical and hydraulic proper-

ties, the effect of natural weathering on GT500 was also analysed by SEM. As can be seen 

in Figure 5b,c, the PP fibres of GT500 were covered with dirt after 6 months, which pre-

vented their observation. For this reason, it was not possible to conclude if they had dam-

age that could explain the decrease found in the tearing strength (∆FR of −46.7%) of GT500. 

It should be noted that the longitudinal cracks shown in Figure 5b, and in greater detail 

in Figure 5c, are in the layer of dirt and not in the PP fibres. 

The PP fibres were still mostly covered with dirt after 12 months (Figure 5d,e). How-

ever, the amount of dirt was low in some areas, making it possible to observe the PP fibres 

and detect some transverse cracks in these. The cracks were very small, with a maximum 

width of about 0.6 µm and a length which tended not to exceed 5 µm. The cracking of PP 

fibres, which is a consequence of photo-oxidation, may explain the decrease found in the 

mechanical strength of GT500 (Section 3.1.2). The layer of dirt covering a PP fibre can be 

observed in some detail in Figure 5e. In this case, the layer of dirt had a thickness of about 

1 to 2 µm. 

Compared to 6 and 12 months, the PP fibres were less dirty after 18 months (Figure 

5f,g). This may seem contradictory considering that the maximum mass per unit area 

value of GT500 was observed precisely at 18 months. However, there is no contradiction, 

as SEM analysis only shows the top surface of GT500 (the area directly exposed to weath-

ering)—the nonwoven structure had, before weathering, a thickness of 3.68 mm. Despite 

less dirt on the top surface, there was still a lot of dirt accumulated inside the nonwoven 

structure of GT500, as indicated by the mass per unit area and thickness values. SEM anal-

ysis also showed the existence of many transverse cracks in the PP fibres (Figure 5f,g). 

These cracks had different lengths, reaching up to about 25 µm, and their maximum width 
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was around 1.5 µm. Compared to 12 months, the cracks were now larger and more abun-

dant. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 5. PP fibres of GT500 before and after natural weathering: (a) unexposed (2000×); (b) 6 

months (500×); (c) 6 months (2000×); (d) 12 months (500×); (e) 12 months (2000×); (f) 18 months (500×); 

(g) 18 months (1000×); (h) 24 months (500×); (i) 24 months (2000×). The magnifications correspond 

to original on-screen values. 
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The SEM images obtained after 24 months of natural weathering (Figure 5h,i) showed 

that the existing cracks in the PP fibres were not much different from those found after 18 

months. Indeed, they had a maximum width of about 1.5–2 µm and a length of up to ≈23 

µm. The mechanical results obtained after 18 and 24 months (Section 3.1.2) also tended 

not to be very different. It is interesting to note that, as observed in previous works 

[9,15,24] for different geotextiles and exposure conditions, the cracks in the PP fibres were 

always transverse. 

3.2. Artificial Weathering 

Before starting with the results of artificial weathering, it is relevant to make a short 

analysis of the tensile results obtained for the unexposed sample. As mentioned in Section 

2, different tensile test methods were used to evaluate the tensile behaviour of the samples 

exposed to natural and artificial weathering. Therefore, it was necessary to test the unex-

posed sample (which provides the reference values for monitoring degradation) by both 

methods. As it can be seen in Tables 5 and 7, the values obtained for the tensile strength 

of GT500 were identical regardless of the tensile test method: 25.58 and 25.65 kN·m−1, re-

spectively, when determined by EN ISO 10319 [31] and EN 29073-3 [28]. By contrast, elon-

gation at tensile strength was significantly lower when GT500 was tested according to EN 

29073-3 [28]. This difference can be explained by the particularities of the methods, which, 

among other things, use specimens with different lengths and widths, as described in Sec-

tion 2.4.3. 

Table 7. Tensile properties of GT500 before and after the laboratory weathering tests. (Notation: 

EUV—total UV radiant exposure; T—tensile strength; ET—elongation at tensile strength; ∆T—varia-

tion in tensile strength). 

Time (Hours) EUV (MJ·m−2) T (kN·m−1) ET (%) ∆T (%) 

0 0 25.65 ± 1.46 63.0 ± 2.7 - 

362 * 50 26.72 ± 3.14 61.2 ± 5.0 +4.2 

500 35 25.93 ± 2.78 59.8 ± 2.7 +1.1 

1000 69 27.56 ± 3.13 59.4 ± 6.7 +7.4 

2000 138 22.58 ± 3.09 41.9 ± 2.7 −12.0 

4000 276 17.50 ± 1.64 38.8 ± 1.5 −31.8 

* Test according to EN 12224 [12]. 

In the laboratory, the weathering resistance of GT500 was initially evaluated follow-

ing EN 12224 [12] as closely as possible. As shown in Table 7, testing according to this 

method did not lead to meaningful changes in the tensile properties of GT500. Indeed, a 

∆T of +4.2% was observed and the corresponding elongation at tensile strength was also 

practically unaffected. 

UV radiation is considered as one of the main damaging agents for plastic materials 

exposed outdoors. In order to further investigate the weathering resistance of GT500, ad-

ditional laboratory tests were carried out with higher exposure times (i.e., higher radiant 

exposures) than those considered in EN 12224 [12]. In order to accelerate the degradation 

process (it is well known that the velocity of many chemical reactions increases with in-

creasing temperature), the UV step of these tests was performed at 60 °C instead of the 50 

°C used in the EN 12224 [12] method (an increase of 10 °C in temperature often results in 

the duplication of the reaction rate). In addition, a condensation step was also introduced 

in the weathering cycle. 

GT500 had no visible damage after the different modified weathering tests. However, 

there were some changes in its tensile behaviour (Table 7). The tests with shorter exposure 

times did not significantly affect the tensile strength of GT500 (∆T of +1.1 and +7.4% after 

500 and 1000 h, respectively). Likewise, they also had no impact on its elongation at tensile 

strength. The increase in the exposure time, namely to 2000 and 4000 h, resulted in a 
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decrease in tensile strength (∆T of −12.0 and −31.8%, respectively). These reductions were 

accompanied by decreases in elongation at tensile strength. 

3.3. Natural Weathering vs. Artificial Weathering 

In this section, the degradation of GT500 under natural and artificial weathering con-

ditions is compared. The comparison will be based on the changes undergone by its tensile 

strength, which was a property measured after both weathering tests. 

The method described in EN 12224 [12] intends to differentiate materials with little 

or no resistance to weathering from those that have this resistance. According to this 

method, GT500 showed good resistance to weathering, without any relevant changes in 

its tensile behaviour. With this result, and following the guidelines of ISO/TR 20432 [36], 

it would be acceptable to expose GT500 outdoors for at least 1 month, without the need to 

apply any reduction factor to allow for weathering. As shown by the results obtained un-

der natural weathering (Table 5), GT500 maintained its tensile strength for at least 6 

months. Indeed, a ∆T of +1.2% was observed after 6 months, with only a reduction in 

tensile strength found after 12 months (∆T of −18.6%). This shows that, in the case of 

GT500, the exposure conditions and test results of EN 12224 [12] were able to ensure its 

correct behaviour, in terms of tensile strength, for 6 months. 

Regarding the adapted laboratory weathering tests, the analysis of the residual ten-

sile strengths of GT500 shows that some relationship can be found between natural and 

artificial weathering (Figure 6). Residual tensile strength (in %) was, regardless of the ten-

sile test method, obtained by dividing the tensile strength of the exposed samples by the 

tensile strength of the unexposed sample. 

 

Figure 6. Comparison of the residual tensile strength of GT500 after the field and modified labora-

tory weathering tests. 

The change in tensile strength caused by 12 months outdoors (∆T of −18.6%) was not 

very different (only slightly more pronounced) than that occurred after 2000 h of exposure 

in the laboratory weatherometer (∆T of −12.0%). Doubling the exposure time to 24 months 
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and 4000 h, the changes found in tensile strength were very similar (∆T of, respectively, 

−30.2 and −31.8%). This showed that 4000 h in the laboratory weatherometer (EUV of 276 

MJ·m−2) was practically equivalent to 24 months outdoors (predicted EUV of 711 MJ·m−2). 

The reduction in tensile strength observed after 18 months outdoors (∆T of −33.3%) was 

also similar to that induced by 4000 h in the laboratory weatherometer. However, it is 

difficult to establish a reliable relationship based on these results due to the high disper-

sion associated with the tensile strength value obtained after 18 months outdoors. 

When comparing the field and laboratory weathering tests, it is possible to conclude 

that different UV radiant exposures (outdoors and in the laboratory) resulted in identical 

changes in tensile strength. For example, the reductions of about 30% in tensile strength 

found after 24 months and 4000 h of natural and artificial weathering, respectively, sup-

port this conclusion. The results also allow us to conclude that, despite having higher UV 

radiant exposures, the field weathering tests did not have a more pronounced impact on 

tensile strength than the laboratory weathering tests. This can be illustrated, for example, 

by comparing the results obtained after 12 months outdoors (predicted EUV of 421 MJ·m−2) 

and 4000 h in the laboratory weatherometer (EUV of 276 MJ·m−2). Indeed, ∆T of −18.6 and 

−31.8%, respectively, were found after these tests. The faster degradation in the laboratory 

may be explained by the temperature to which GT500 was exposed, which was predicta-

bly higher in the accelerated weathering tests (60 °C in the UV step) than in the field 

weathering tests (temperature not monitored at the surface of GT500, which had a black 

colour). In addition, it is possible that the dirt accumulated in the nonwoven structure of 

GT500 during the outdoor exposure had a positive contribution to retarding degradation 

by preventing sunlight from reaching the PP fibres. 

The relationship found in this work between natural and artificial weathering should 

be considered with care and should not be generalized or extrapolated directly to other 

materials. Three reasons can be pointed out for this: (1) the results obtained for GT500, 

which had a particular stabilisation package, may not be valid for other materials with 

other stabilisation packages; (2) geotextiles made from other polymers may not have the 

same behaviour when exposed in the laboratory and outdoors; and (3) a different expo-

sure site, with different weather conditions, may not lead to the same results. Even the 

same exposure site at different time periods may result in different results. Therefore, ob-

taining a universal relationship between natural and artificial weathering is a difficult, if 

not impossible, task. 

Despite the difficulty in extrapolating the results to other materials, the outcomes of 

this work may be useful to help foresee the damage that other PP geotextiles (with a sta-

bilisation package identical to that of GT500) may suffer due to weathering. For this, it 

will be necessary to account for the different climatic conditions (e.g., UV radiant exposure 

and temperature) to which the materials are expected to be exposed (weather is not repro-

ducible). The relationship found between natural and artificial weathering may be help-

ful, based on laboratory test results, in providing an indication of the behaviour of a ma-

terial under natural degradation conditions. However, any prediction must be made care-

fully, knowing in advance that the result may not be the most accurate. 

4. Conclusions 

This work evaluated the resistance of a PP geotextile (designated as GT500) to weath-

ering, both outdoors (under natural degradation conditions) and in the laboratory (under 

accelerated degradation conditions). The damage experienced by GT500 in the weathering 

tests was assessed by monitoring changes in its physical, mechanical and hydraulic prop-

erties, and by microscopic analysis. The main results of the work are as follows: 

 The mass per unit area and thickness of GT500 increased (less than 10% in most cases) 

after the field weathering tests. This was due to the presence of dirt on the nonwoven 

structure and, obviously, not to an increase in polymeric mass. 
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 The mechanical properties of GT500 degraded during outdoor exposure. The per-

centage reductions observed in tensile and puncture strength were not very different 

from each other (around 30% after 24 months) but were less pronounced than those 

found in tearing strength (around 65% after 24 months). 

 The water permeability normal to the plane of GT500 was affected by natural weath-

ering, with the material becoming less permissive—reductions in the velocity index 

for a head loss of 50 mm ranging from 23.4 to 48.5%. This can be attributed to the dirt 

existing in the nonwoven structure, which filled the free spaces between the PP fibres 

and reduced the flow of water. 

 SEM analysis showed that outdoor exposure induced transverse cracks in the PP fi-

bres, which may explain the deterioration in the mechanical behaviour of GT500. It 

also showed the presence of dirt on the nonwoven structure. 

 According to the method of EN 12224 [12], GT500 had adequate resistance to artificial 

weathering, without changes in its tensile behaviour. Compared to outdoor results, 

the test conditions and results of this method were able to ensure, in terms of tensile 

strength, the correct behaviour of the material for 6 months. 

 The adapted laboratory weathering tests, with exposure conditions more severe than 

those of the EN 12224 [12] method, caused the deterioration of the tensile behaviour 

of GT500. The reduction in tensile strength observed after 4000 h in the laboratory 

weatherometer (EUV of 276 MJ·m−2) was very close to that found after 24 months out-

doors (predicted EUV of 711 MJ·m−2). This relationship may not be valid for other ge-

otextiles (e.g., made from different polymers or with different stabilisation packages) 

or other exposure locations. 

Overall, GT500 showed some resistance to weathering. For most applications, where 

the exposure time to UV radiation and other weathering agents is short (less than 1 month, 

corresponding to the period required for installation), this type of degradation may not 

be a problem for a properly stabilised PP geotextile. However, for applications where ex-

posure over a long period of time is expected, weathering can significantly affect the be-

haviour of geotextiles, even if they are stabilised against UV radiation (as GT500 was). In 

the latter cases, care should be taken when selecting materials to be applied, and it is es-

sential to ensure that their weathering resistance is in compliance with the expected expo-

sure conditions. 
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Notation 

A—area; B—width; E—solar radiant energy; E340nm—radiant exposure at 340 nm; ET—elonga-

tion at tensile strength; EUV—UV radiant energy; F—tensile force; Fmax—maximum tensile force; FP—

puncture strength; FR—tearing strength; H—head loss; hP—push-trough displacement at maximum 

force; N—number of weathering cycles; P—precipitation; RH—relative humidity; RT—correction 

factor for a water temperature of 20 °C; t—time interval; t—thickness; T—tensile strength; TAir—air 

temperature; V—volume; v20—velocity index at 20 °C; VH50—velocity index for a head loss of 50 mm; 

X—property X (generic); X(Exposed)—property X after the weathering tests; X(Unexposed)—property X be-

fore the weathering tests; ∆FP—variation in puncture strength; ∆FR—variation in tearing strength; 

∆t—variation in thickness; ∆T—variation in tensile strength; ∆VH50—variation in the velocity index 

for a head loss of 50 mm; ∆X—variation in property X; ∆µA—variation in mass per unit area; µA—

mass per unit area. 
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