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Abstract

In this work, we develop typed languages, based on polymorphic record calculi, which are
purposely designed to deal with events. We start by presenting EVL, a minimal higher-order
functional programming language to deal with generic events. The notion of generic event
extends the well-known notion of event traditionally used in a variety of areas such as database
management, concurrency, reactive systems and cybersecurity. Generic events were introduced
in the context of a metamodel to specify obligations in access control systems. EVL is based
on an ML-style polymorphic record calculus originally developed by Ohori in the 90’s, that
supports polymorphic operations on records such as field selection and update, but lack support
for operations such as field addition and removal. The second part if this work addresses this issue
by presenting an ML-style polymorphic record calculus with extensible records based on Ohori’s
original calculus. Most ML-style polymorphic record calculi that support extensible records are
based on row variables. We explore an alternative construction based on Ohori’s original idea
of using kind restrictions to express polymorphic operations on records such as field selection
and modification, where other powerful operations on records such as field addition and removal
can also be included. In the third and last part of this work, we show how the higher-order
capabilities of EVL can be effectively used in the context of Complex Event Processing (CEP) by
defining higher-order parameterised functions that deal with the usual CEP techniques, and we
also show how the inclusion of other powerful operations on records such as field addition and
removal can also be useful in the context of CEP.

i





Resumo

Neste trabalho, desenvolvemos linguagens tipadas, baseadas em cálculos de records, que são
desenhadas com o propósito de lidar com evento. Começamos por apresentar a EVL, uma
linguagem de programação de ordem superior mínima que lida com eventos genéricos. A noção
de evento genérico estende a noção bem estabelecida de evento que é usada tradicionalmente
numa variedade de áreas como gestão de bases de dados, concorrência, sistemas reactivos e
cybersergurança. Eventos genéricos foram introduzidos no contexto de um metamodelo para
especificar obrigações em sistemas de controlo de acesso. A EVL é baseada num cálculo polimórfico
com records ao estilo ML desenvolvido originalmente por Ohori nos anos 90, que suporta operações
polimórficas a records como a selecção e actualização de campos, mas que não suporta operações
como a adição e remoção de campos. A segunda parte deste trabalho lida com este problema
através da apresentação de um cálculo com records ao estilo ML com suporte de records extensíveis
baseado no cálculo original do Ohori. A maioria dos cálculos polimórficos com records ao estilo
ML que suportam records extensíveis são baseados em variáveis de linha. Nós exploramos uma
construção alternativa baseada na ideia original do Ohori de usar restrições de espécie para
expressar operações polimórficas sobre records como a selecção e actualização de campos, onde
outras operações poderosas sobre records como a adição e remoção de campos também podem
ser incluídas. Na terceira e última parte deste trabalho, mostramos como é que as capacidade de
ordem superior da EVL podem ser usadas eficazmente no contexto do Processamento de Eventos
Complexo (CEP) através da definição de funções de ordem superior parametrizadas que lidam
com as técnicas típicas do CEP, e também mostramos como é que a inclusão de outras operações
poderosas sobre records como a adição e remoção de campos também podem ser úteis no contexto
do CEP.
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Chapter 1

Introduction

In [2], a general typed language to deal with the notion of event in the context of access control
systems was defined, and the distinction between generic and specific events was made. Generic
events represent the kind of action that can occur in a system. But specific events represent
actual occurrences of those kinds of actions. As an example, the action of a doctor P1 reading
the medical record of a patient P2 is described by the following generic event:

gen_read(PD1 , PP2 ) = {act = read, doc = PD1 , obj = rec(PP2 )}.

And the following specific event describes the order to evacuate the neurology ward of a hospital
issued by “Chief Jones”:

{action = evacuate,ward = neurology, principal = chief_jones}.

Typing rules for values, specification and events were given in [2], not only to ensure the
well-formedness of the terms of the event language, but also to formally defined the notion of
event instantiation. Associating specific events to generic events was achieved through the use an
implicit notion of subtyping inspired by Ohori’s type system in [46]. This allowed for type-checking
of event-specification, but not for dealing with most general types for event-specifications.

Compound events in [2] were assumed to appear as a single event for simplicity reasons and a
more detailed and realistic treatment of this type of events was left for future work. The notion
of composition of events is a key feature of a relatively recent research area known as Complex
Event Processing (CEP), where great emphasis is put on the ability to detect complex patterns
in incoming streams of events and on the processing of those events.

The development of an event language that would facilitate the specification and processing
of events is the main motivation behind this work.

Chapter 3 presents the EVL language. This language was inspired by the language in [2] and is
both a restriction and an extension of Ohori’s original ML-style polymorphic record calculus [46].
In [46], a record is a term of the form

{l1 = M1, . . . , ln = Mn}
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2 Chapter 1. Introduction

that represents a structure with fields, each labelled with l1, . . . , ln and of value M1, . . . ,Mn.
The type system developed by Ohori in [46] supports polymorphic versions of the two most basic
operations on records. Field selection M.l allows us to obtain the value in a record M that has
label l. Field update modify(M, l,N) allows us to update the value in a record M that has label
l with the value N . As an example, consider the following term:

λxy.let getName = λz.(z.name) in getName {name = x, address = y}.

Here, we apply the function getName to the concrete structure {name = x, address = y}. But it
is easy to see that we should be able to apply getName to any other structure containing a field
with label name. There are various ways of dealing with this type of record polymorphism. In
both [46] and Chapter 3 of this work, this is achieved through the use of a system of kinds.

A kind represents a set of types and has two possible forms. The universal kind U represents
the set of all types. A kind of the form {{l1 : τ1, . . . , ln : τn}} represents the set of record types
that have at least those same fields. Quantified types (or type schemes) are of the form ∀α :: κ.σ,
where α is a type variable, κ is a kind, and σ is some other type scheme. The fact that κ appears
next to α means that α can only be instantiated (replaced) by types that belong to the set of
types represented by κ.

In EVL, events are going to be represented as records. As an example, consider the following
program written in EVL that corresponds to the example of a generic event given above:

letEv GenRead d p = {act = read, doc = d, obj = rec p} in GenRead.

Because the notation used to represent records was also used in [2] to represent events, if we were
to write the EVL program equivalent to the example of a specific event given above, there would
be little difference. That being said, note that we did not include any type information in this
last example. This is because we were able to adapt Ohori’s original type inference algorithm
in [46] to the type system of EVL, while keeping it sound and complete with respect to the typing
rules of the language.

Regarding typing relations on events, such as generalization, specialization, and even
membership, these are captured by the EVL type system in a very organic manner, through the
notion of type instantiation, denoted by ≥. As an example, the previous EVL program describing
a generic event has the type:

∀α1 :: U .∀α2 :: U .α1 → α2 → {act : τ1, doc : α1, obj : τ2},

where τ1 is the type of read and τ2 is the type of rec p, assuming rec has type α2 → τ2. The
following term is a specialization of that generic event:

{act = read, doc = john, obj = rec george},

since its type is

{act : τ1, doc : τ3, obj : τ2}
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and

∀α1 :: U .∀α2 :: U .α1 → α2 → {act : τ1, doc : α1, obj : τ2} ≥ {act : τ1, doc : τ3, obj : τ2}.

Regarding the processing of events, the higher-order capabilities of EVL as a functional program-
ming language allows us to define parameterised functions to deal with usual CEP techniques [25].
More specifically, using EVL, we are able to process raw events produced by some event processing
system and generate events that can then be passed on to an event consumer. As an example,
consider the following EVL program that defines what is known as an event processing agent [26],
that uses a higher-order function to filter events from a stream according to their locations:

let p = λx.(x.location) == "Porto"String in filter p.

By following Ohori’s approach in [46], we were able to define a language to deal with events.
The fact that we choose Ohori’s system as the basis for EVL was mainly due to the fact that
the event language in [2] had already drawn some inspiration from it. But there are alternative
polymorphic type systems that deal with records. And some of them can even support more
powerful operations on records, such as field addition and removal. Out of these, the most
common approaches are based on subtyping [14, 37] or row variables [32, 49, 52, 54], but there are
others based on flags [48, 50], predicates [28, 33] and scope variables [42]. We believe that these
operations are very useful in the context of event processing. This motivated us to add extensible
records to Ohori’s original ML-style polymorphic record calculus so we could incorporate these
more powerful operations into EVL.

Chapter 4 presents an ML-style polymorphic record calculus with extensible records based
on Ohori’s work in [46].

In order to accommodate extensible records into Ohori’s original type system, we had to
refine the notions of kind and record type. In our type system, kinds still only have two possible
forms. We have kept the notion of universal kind unchanged. But altered the notion of record
kind. In our type system, a record kind is of the form

{{ll1 : τ l1, . . . , lln : τ ln || lr1 : τ r1 , . . . , lrm : τ rm}}

that denotes the set of all record types that contain at least the fields to the left of || and do not
contain the fields to the right of ||. The inclusion of negative information about the presence
of fields in a record, in addition to the positive information already captured in the original
definition of kind, is what allows us to add or remove fields from records and introduce two new
operations on records. Terms of the form M \\ l represent the removal of a field with label l from
a record M , if it exists. Terms of the form extend(M, l,N) represent the addition of a field with
value M and label l, if no field with that label exists in M .

We also introduce two new type constructors that we collectively call extensible types.
Assuming that χ is the type of the record M and τ is the type of the term N , χ+ {l : τ} is the
type of M \\ l, if M contains the field (l = N), and χ− {l : τ} is the type of extend(M, l,N), if
M does not contain a field with label l.
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By introducing these type constructors to the type system, we can no longer identify any
pair of types that represent records with the same set of fields. As a first example, consider the
two following records:

extend(extend({one = 1, two = 2}, three, 3), four, 4),
extend(extend({one = 1, two = 2}, four, 4), three, 3).

These records will have the following types:

{one : Int, two : Int}+ {three : Int}+ {four : Int},
{one : Int, two : Int}+ {four : Int}+ {three : Int}.

Even though they are syntactically different, they represent records with the same set of labels.
Now consider the following example:

extend({one = 1, two = 2}, three, 3) \\ three.

Its type is the following:

{one : Int, two : Int}+ {three : Int} − {three : Int}.

But note that it contains the same set of labels as:

{one : Int, two : Int},

even though their types are different.

In order to identify the type of every two records that have the same set of fields, we first
introduced equality modulo ordering of what we are going to call field-alteration types. This allows
us to identify the types of the first example. Then we introduced a type reduction system that
will reduce types to a form where each label appears only once in every extensible type. Using this
type reduction system, we are able to reduce {one : Int, two : Int}+ {three : Int} − {three : Int}
to {one : Int, two : Int} and identify these two types as well. Using the type reduction system,
we are also able to develop a sound and complete type inference algorithm for this calculus with
extensible records that has the additional property of always returning types in their reduced
forms.

In Chapter 5 we illustrate how EVL can be used in the context of CEP and specification of
obligation policies. And we finish the chapter by showing how extensible records can be used to
represent events and how these new more powerful operations on records can be explored in the
context of CEP.

1.1 List of Main Contributions

The following lists the main contribution of this work:
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• The design of a minimal higher-order functional language with polymorphic record types
tailored to the specific task of event processing, that we called EVL.

• A sound and complete type inference algorithm for EVL.

• A Call-by-Value operational semantics for EVL along with a proof of type soundness.

• The design definition of an ML-style polymorphic record calculus with extensible records
with a type system based on the notion of extensible types.

• A sound and complete type inference algorithm for the ML-style polymorphic record
calculus with extensible records.

• A comprehensive study of the effectiveness of EVL in the context of CEP and the specification
of obligation policies.

• A demonstration of how EVL can be used in the context of CEP and specification of
obligation policies.

Some of the work presented in this manuscript has already been published. Chapters 3 and 5
were based on [4] and Chapter 4 was based on [1].





Chapter 2

Background

In this chapter we present some of the well established concepts and results that are going to be
necessary in order to better understand the work presented in the following chapters.

2.1 The λ-Calculus

In the 1930s [18], the λ-calculus was introduced by Alonzo Church as a foundation for logic and
mathematics. Unfortunately, it was shown logically inconsistent in 1935 by Kleene and Rosser [40].
That being said, a consistent part of the theory was found quite successfully as a theory of
computations [7]. Since then, the λ-calculus, along with its various typed versions, has found
applications in many different areas in mathematics, philosophy, linguistics, category theory, and
computer science. In the latter, the λ-calculus has played an important role in the development
of the theory of programming languages and there are various functional programming languages
that are based on it. For a detailed reference, we refer to [7].

Definition 2.1.1. Let x range over an infinite countable set of variables V. The set of λ-terms,
denoted by Λ, is given by the following grammar:

M ::= x (variables)
| (MM) (function application)
| (λx.M) (functional abstraction)

Whenever two terms M,N ∈ Λ are syntactically equal, we will write M ≡ N .

Example 2.1.1. Let x, y ∈ V. The following are all well-formed terms from Λ:

(λx.(xx)) (λx.(λy.(xy))) ((λx.(xx))(λy.(yy)))

We will follow the convention that function application is left-associative and functional

7



8 Chapter 2. Background

abstraction is right-associative:

(. . . (M1M2) . . .Mn) ≡ (M1M2 . . .Mn)
(λx1.(λx2.(. . . (λxn.M) . . .))) ≡ (λx1x2 . . . xn.M)

This allows us to remove some of the parenthesis from the terms in Example 2.1.1:

(λx.xx) (λxy.xy) (λx.xx)(λy.yy)

Notation 2.1.1. A subterm of a term M may have more that one occurrence in M . For
example, the term

(λy.xy)(λz.xy)

has two occurrences of xy and two occurrences of x. A precise definition of “occurrence” can be
written out, but a good intuitive understanding of the concept will be enough throughout this
work. That being said, we will underline occurrences to distinguish them from subterms. For
example, we may say

Let P be any occurrence of P in M”.

An occurrence of λx will be called an abstractor, and the occurrence of x in it will be called a
binding occurrence of x. All the occurrences of terms in M , other than binding occurrences of
variables will be called components of M .

Definition 2.1.2. Let λx.P be a component of a term M . Component P is called the body of
λx.P or the scope of the abstractor λx.

The covering abstractors of a component R of M are the abstractors in M whose scopes
contain R.

Definition 2.1.3. A non-binding variable-occurrence x in a term M is said to be free in M if,
and only if, it is not in the scope of an occurrence of λx in M , otherwise it is said to be bound
in M .

A variable x is said to be bound in M if, and only if, M contains an occurrence of λx; and x
is said to be free in M if, and only if, M contains a free occurrence of x.

Example 2.1.2. In the term x(λy.xy) the variable x occurs free (twice) and y occurs bound.
Note that a variable may occur both free and bound in a term: y occurs both free and bound in
the term y(λy.y).

Definition 2.1.4. The set of free variables ofM ∈ Λ, denoted by FV(M), is defined inductively
as follows:

FV(x) = {x}
FV(MN) = FV(M) ∪ FV(N)

FV(λx.M) = FV(M) \ {x}
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Definition 2.1.5. The set of bound variables of M ∈ Λ, denoted by BV(M), is defined
inductively as follows:

BV(x) = ∅
BV(MN) = BV(M) ∪ BV(N)

BV(λx.M) = BV(M) ∪ {x}

Definition 2.1.6. We say that M ∈ Λ is a closed term if and only if FV(M) = ∅.

In the λ-calculus, the concept of function application is captured by the β-reduction rule
and the definition of the latter depends on the substitution operator M [N/x] which denotes
the result of substituting N for x in M .

Definition 2.1.7. LetM,N ∈ Λ and x ∈ V. ThenM [N/x] ∈ Λ is obtained fromM by replacing
every free occurrence of x with N as follows:

y[N/x] ≡
{
N if y ≡ x
y otherwise

(MP )[N/x] ≡ (M [N/x]P [N/x])

(λy.M)[N/x] ≡
{

(λy.M) if x ≡ y
(λy.M [N/x]) otherwise

Definition 2.1.8. We say that N ∈ Λ is a subterm of M ∈ Λ, denoted by N v M , if
N ∈ Sub(M), where Sub(M), the collection of subterms of M , is defined inductively as follows:

Sub(x) = {x}
Sub(λx.M) = Sub(M) ∪ {λx.M}
Sub(MN) = Sub(M) ∪ Sub(N) ∪ {MN}

Definition 2.1.9. Let M,N ∈ Λ.

• We say that M reduces to N in one β-reduction step, denoted by M →1
β N , if N can be

obtained from M by replacing a subterm of M of the form (λx.P )Q (called a β-redex)
with P [Q/x] (its contractum).

• We define →β as the reflexive and transitive closure of →1
β.

Note that care is needed for substitutions. Consider (λx.(λy.yx))y ∈ Λ and its one-step
β-reduction

(λx.(λy.yx))y →1
β (λy.yx)[y/x] ≡ λy.yy.

The free variable y becomes bound after substitution for x in term λy.yx. This should not be
allowed and can be avoided.



10 Chapter 2. Background

Definition 2.1.10. A change of bound variables in M ∈ Λ is the replacement of a subterm
λx.N vM with λy.(N [y/x]), where y does not occur (at all) in N .

Because we assume that y is fresh (i.e. that y does not occur (at all) in N), there is no
danger of being accidentally bound in N after the substitution for x.

Definition 2.1.11. We say that M ∈ Λ is α-congruent with N ∈ Λ, denoted by M ≡α N , if N
results from M by a series of changes of bound variables.

Example 2.1.3. Let x, y, z ∈ V.

λx.xy ≡α λz.zy 6≡α λy.yy

λx.x(λx.x) ≡α λy.y(λx.x) ≡α λy.y(λz.z)

From now on, we will identify α-congruent terms, i.e, we will write λx.x ≡ λy.y and
so on. We will also adopt the Barendregt variable-name convention: if M1, . . . ,Mn ∈
Λ occur in a certain mathematical context (e.g. a definition or a proof), we assume that
all bound variables in these terms are chosen to be different from the free variables, i.e.,
(BV(M1) ∪ · · · ∪ BV(Mn)) ∩ (FV(M1) ∪ · · · ∪ FV(Mn)) = ∅.

Consider the term (λy.yz) (λx.x). This term can be β-reduced in one step to (λx.x)z and
then further to z.

If we think of β-reduction as a computation mechanism, then each β-reduction step corresponds
to a single computation step (if we ignore substitution steps) and z is the result of the computation,
which we call the normal form of (λy.yz) (λx.x).

Definition 2.1.12. Let M ∈ Λ.

• M is a β-normal form (or is in β-normal form) if M has no subterm of the form (λx.P )Q v
M .

• We say that M has a β-normal form if there exists an N ∈ Λ such that N ≡M and N is
in β-normal form.

Example 2.1.4. Let x, y, z ∈ V.

• λx.x is in β-normal form.

• z is the β-normal form of (λy.yz) (λx.x).

• Ω ≡ (λx.xx)(λx.xx) does not have a β-normal form.

As seen in this example, not all terms have β-normal forms. On the other hand, if a term
has a β-normal form, then it is unique.
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Theorem 2.1.1 (Church-Rosser). Let M,N,P ∈ Λ. If M →β N and M →β P , then there is a
Q ∈ Λ such that N →β Q and N →β Q.

Proof. See Theorem 1B5 in [36] or Theorem 3.2.8 in [7].

Example 2.1.5. Consider the term (λxy.y) Ω. To apply a β-reduction step to it, we can either
choose to first reduce its leftmost β-redex,

(λxy.y)Ω→1
β λy.y,

or its rightmost β-redex

(λxy.y)Ω→1
β (λxy.y) Ω.

In the former case, we reach its β-normal form. In the latter we do not, because Ω β-reduces to
itself.

The order in which we apply a sequence of β-reduction to a term is meaningful and we must
take care when choosing which β-redex to reduce first. In fact, there is a specific order in which
we should apply β-reduction in order to always reach the β-normal form of a term that admits a
normal form.

Definition 2.1.13. A sequence of β-reductions is said to be in normal order if, at each
β-reduction step, we always choose to reduce its leftmost β-redex first.

Theorem 2.1.2 (Normalization). Let N ∈ Λ be the normal form of M ∈ Λ. Then there is a
sequence of β-reduction steps in normal order that starts with M and ends at N .

Proof. See Theorem 1B9 in [36] or Theorem 13.2.2 in [7].

If we think of the λ-calculus as a programming language and think of β-reduction as its
computation mechanism, we may realize the following correspondences:

• A term in β-normal form corresponds to the result of a (terminating) computation.

• Terms without a β-normal form correspond to non-terminating (infinite) computations.

• β-reducing a term in normal order corresponds to a call-by-name operational semantics.

2.2 The Simply Typed λ-Calculus

The simply typed λ-calculus is a typed interpretation of the type-free λ-calculus presented in the
previous section. It was originally introduced by Alonzo Church in [19] to avoid paradoxical uses
of the type-free λ-calculus and later by Haskell Curry and Robert Feys in [22] by adapting the
type-assignment mechanism developed for combinatory logic in [21] to λ-terms.
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Definition 2.2.1. Let α range over an infinite countable set of type variables A. The set of
types, denoted by T, is given by the following grammar:

τ ::= α (type variables)
| τ → τ (function types)

We will write τ ≡ τ ′ whenever two types τ, τ ′ ∈ T are syntactically equal.

Example 2.2.1. Let α, β,∈ A. The following are all well-formed types from T:

(α→ α) (α→ (β → β)) ((α→ α)→ (β → β)) ((α→ α)→ β)

Definition 2.2.2. The set of distinct type variables occurring in a type τ ∈ T, denoted by
Vars(τ), is defined inductively as follows:

Vars(α) = {α}
Vars(τ → τ ′) = Vars(τ) ∪Vars(τ ′)

Definition 2.2.3. We say that τ ∈ T is a subtype of τ ′ ∈ T, denoted by τ vtype τ ′, if
τ ∈ Subtype(τ ′), where Subtype(τ ′), the collection of subtypes of τ ′, is defined inductively as
follows:

Subtype(α) = {α}
Subtype(τ → τ ′) = Subtype(τ) ∪ Subtype(τ ′) ∪ {τ → τ ′}

Let τ, τ ′ ∈ T. According to [36], each type variable can be interpreted as a set, and each
function type τ → τ ′ can be interpreted as a set of functions from τ to τ ′. The precise nature of
this set of functions (e.g. either all functions or only functions that can be defined in a given
system) will depend on the particular interpretation we may have in mind.

We will follow the convention that function types are right-associative:

(τ1 → (τ2 → (. . .→ (τn−1 → τn)))) ≡ τ1 → τ2 → . . .→ τn−1 → τn

This will allow us to remove some of the parentheses from the types in Example 2.2.1:

α→ α α→ β → β (α→ α)→ β → β (α→ α)→ β

Note that the associativity of function types is opposite to the one of function application:
function application follows the convention in which an operator’s input is written on the right;
in function types, the type of the input appears on the left.

There are two main ways of introducing types in the λ-calculus, one is attributed to Alonzo
Church [19] and the other to Haskell Curry [22]. In the former, the definition of λ-terms is
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restricted by giving each term a unique type as part of its structure and only allowing an
application MN to be defined when M has a function type of the form τ → τ ′ and N has the
appropriate argument-type τ . Curry took a different approach. He proposed a language which
would include all the type-free λ-terms, and a type-theory which would contain rules assigning
types to some of these terms, but not others. That is, in Church style type theory, each term has
a unique built-in type, while in Curry style type theory, term are assigned types according to
typing rules. From a programming languages perspective, the Curry style type-theory allows us
to write programs (λ-terms) without any type annotations and have a separate type system that
can check if the programs we write are well-formed depending on whether they can be assigned a
type or not. In this thesis, we will adopt this style.

Definition 2.2.4. Let M ∈ Λ and τ ∈ T.

1. A type-assignment statement is of the form M : τ , where M is the subject and τ the
predicate of the statement.

2. A type-declaration is a statement with a variable as its subject.

3. A typing environment, denoted by Γ, is any finite (and possibly empty) set of type-
declarations {x1 : τ1, . . . , xn : τn} with distinct variables as subjects, in which case we say
that the typing environment is consistent.

Informally, M : τ should be read as “M can be assigned the type τ” or “M has type τ” or
“M denotes a member of whatever set τ denotes”.

From now on, the reader may assume that every typing environment is consistent unless it is
stated otherwise.

Definition 2.2.5. Let Γ = {x : τ1, . . . , xn : τn} be a typing environment:

• The domain of Γ, denoted by dom(Γ), is {x1, . . . , xn}.

• Γ(xi) = τi, 1 ≤ i ≤ n.

• The result of removing the assignment whose subject is x (when it exists) from Γ, denoted
by Γx, is Γ \ {x : Γ(x)}.

• The result of restricting the domain of Γ to a set V of variables, denoted Γ |V , is {x : Γ(x) |
x ∈ V }.

Notation 2.2.1. We write Γ{x : τ} for Γ ∪ {x : τ} if Γ ∪ {x : τ} is consistent.

Definition 2.2.6. We say that M ∈ Λ can be assigned the type τ ∈ T according to the type
assignment Γ, if the statement M : τ can be derived from Γ using the typing rules in Figure 2.1.

Example 2.2.2. Consider the term (λxy.x)(λx.x) and typing environment Γ = ∅. Then we can
deduce (λxy.x)(λx.x) : β → α→ α from Γ using the typing rules as follows:
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(x : τ) ∈ Γ (Var)Γ ` x : τ

Γ `M : τ → τ ′ Γ ` N : τ (App)
Γ `MN : τ ′

Γ{x : τ} `M : τ ′ (Abs)
Γ ` λx.M : τ → τ ′

Figure 2.1: Typing rules for the Simply Typed λ-calculus.

(x : α→ α) ∈ {x : α→ α, y : β} (Var)
{x : α→ α, y : β} ` x : α→ α (Abs)
{x : α→ α} ` λy.x : β → α→ α (Abs)
∅ ` λxy.x : (α→ α)→ β → α→ α

(x : α) ∈ {x : α} (Var)
{x : α} ` x : α (Abs)
∅ ` λx.x : α→ α (App)

∅ ` (λxy.x)(λx.x) : β → α→ α

In other words, (λxy.x)(λx.x) has type β → α→ α.

We stated in Example 2.1.4 that Ω does not have a β-normal form. In the simply typed
λ-calculus, it does not have a type as well. The reason is that in this calculus, every typeable
term has a β-normal form.

Theorem 2.2.1 (Strong Normalization). IfM is a a typeable term in the simply typed λ-calculus,
every β-reduction that starts at M is finite.

Proof. See Theorem 2D6 in [36].

Note that the converse does not hold in the simply typed λ-calculus. E.g., the term λx.xx is
in β-normal form but it is not typable in this calculus because to type the subterm xx, x has to
be both of type α of α→ β. This self-application of x to itself is what gives rise to the paradoxes
that Church wanted to avoid by introducing types to the type-free λ-calculus. But only the
general concept of self-application is harmful, particular cases of self-application are still allowed.

Example 2.2.3. We can deduce (λx.x) (λx.x) : α→ α from the empty typing environment Γ
as follows:

(x : α→ α) ∈ {x : α→ α} (Var)
{x : α→ α} ` x : α→ α (Abs)
∅ ` λx.x : (α→ α)→ α→ α

(x : α) ∈ {x : α} (Var)
{x : α} ` x : α (Abs)
∅ ` λx.x : α→ α (App)

∅ ` (λx.x) (λx.x) : α→ α

Besides avoiding logical paradoxes another main purpose of type-theories is to avoid the
running programs that may result in runtime errors. If a term M has a type τ we can think
of M as being in some sense “safe”, i.e., if M represents a stage in some computation which
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continues by β-reducing M , we would like to know that all later stages in the computation are
just as safe as M .

Theorem 2.2.2 (Subject Reduction). If Γ `M : τ and M →β N , then Γ ` N : τ .

Proof. See Theorem 2C1 in [36].

A typeable term has a potentially infinite set of types in the simply typed λ-calculus.

Example 2.2.4. Consider the term λx.x and typing environment Γ = ∅. Then we can deduce
λx.x : α→ α from Γ using the typing rules as follows:

(x : α) ∈ {x : α} (Var)
{x : α} ` x : α (Abs)
∅ ` λx.x : α→ α

But note that all other types in the infinite set of types that can be assigned to this term are
instances of α→ α, which is a principal type for the term λx.x.

In fact, every term of the simply typed λ-calculus has a principal type, which is the most
general type it can receive. Most importantly, from a programming languages perspective, is the
fact that there exists an algorithm for finding the most general type of a term.

Definition 2.2.7. A type-substitution, denoted by S, is any expression of the form

[τ1/α1, . . . , τn/αn],

such that α1, . . . , αn ∈ A are distinct type-variables and τ1, . . . , τn ∈ T.

Let S = [τ1/α1, . . . , τn/αn] be a type-substitution:

• For τ ∈ T, S(τ) is the type obtained by simultaneously substituting each αi with τi

throughout τ , for 1 ≤ i ≤ n. We call S(τ) an instance of τ .

• The domain of S, denoted by dom(S), is {α1, . . . , αn}.

Type-substitutions can be extended to typing environments as follows.

Definition 2.2.8. Let Γ = {x1 : τ1, . . . , xn : τn} be a typing environment and S be a type-
substitution:

S(Γ) = {x1 : S(τ1), . . . , xn : S(τn)}.

And to type derivations as follows.
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Definition 2.2.9. Let Γ `M : τ be the conclusion of some derivation of the statement M : τ
from some typing environment Γ:

S(Γ `M : τ) = S(Γ) `M : S(τ).

Note that the consistency of Γ implies that of S(Γ). Also, note that type-substitutions only
apply to types or typing environments, not to terms. This means that terms are left unchanged
whenever a type-substitution is applied to them.

We call S(Γ) and S(Γ `M : τ) instances of Γ and Γ `M : τ , respectively.

Definition 2.2.10. A variables-for-variables substitution is a substitution of the form
[β1/α1, . . . , βn/αn] where β1, . . . , βn are (not necessarily distinct) variables.

Let S = [β1/α1, . . . , βn/αn] be a variables-for-variables substitution. If β1, . . . , βn are distinct,
S is called one-to-one, and if also {α1, . . . , αn} = Vars(τ), for a given τ ∈ T, S is called a
renaming (of the variables) in τ .

Definition 2.2.11. We say that two type-substitutions S1 and S2 are extensionally equiva-
lent, denoted by S1 = S2, if and only if S1(τ) ≡ S2(τ) for all τ ∈ T.

The composition of two type-substitutions S1 and S2 should be a simultaneous substitution
that will have the same effect as applying S2 and S1 in succession.

Definition 2.2.12. The composition of two type-substitutions S1 = [τ1
1 /α

1
1, . . . , τ

1
n/α

1
n] and

S2 = [τ2
1 /α

2
1, . . . , τ

2
m/α

2
m], denoted by S2 ◦ S1, is defined as:

S2 ◦ S1 = [τ2
i1/α

2
i1 , . . . , τ

2
ik
/α2

ik
, S2(τ1

1 )/α1
1, . . . , S2(τ1

n)/α1
n],

where {α2
i1 , . . . , α

2
ik
} = dom(S2) \ dom(S1).

Also, we assume that this operation is right-associative so that

S1 ◦ (S2 ◦ · · · ◦ (Sn−1 ◦ Sn)) = S1 ◦ S2 ◦ · · ·Sn−1 ◦ Sn.

Now we can define precisely what it means for a type to be a principal type of a term.

Definition 2.2.13. In the simply typed λ-calculus, a principal type of a term M is a type
τ ∈ T such that:

• Γ `M : τ , for some typing environment Γ.

• If Γ′ `M : τ ′ for some typing environment Γ′, then τ ′ is an instance of τ .

The principal type of a term can be thought of as completely characterizing the set of all
types assignable to that term.
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Definition 2.2.14. A principal pair for a term M is a pair (Γ, τ) such that Γ ` M : τ is
deducible using the typing rules and every other deducible formula Γ′ |dom(Γ)` M : τ ′ is an
instance of Γ `M : τ .

Definition 2.2.15. A principal deduction for a term M is a deduction ∆ of a formula
Γ `M : τ such that every other deduction whose conclusion’s subject is M is an instance of ∆.

Theorem 2.2.3 (Principal Type). Every typeable term has a principal-deduction and a principal-
type in the simply typed λ-calculus. Further, there is an algorithm that will decide whether a
given λ-term M is typeable in the simply typed λ-calculus and if “it is” will output a principal
pair for M .

Proof. See Theorem 3A6 in [36].

The two main steps in the type inference algorithm will be the computation of the
principal type of a term of the form λx.M from the principal type of the subterm M and the
computation of the principal type of a term of the form MN from the principal type of M and
N . The former is straightforward, while the latter requires a little work.

Example 2.2.5. Suppose we are trying to infer whether an application MN such that FV(MN)
= ∅ (for simplicity reasons) is typeable in the simply typed λ-calculus, and we already know that
the principal type of M is τ → τ ′ and the principal type of N is τ ′′. Then by Definition 2.2.13,
we know that the set of types that can be assigned to M are instances of τ → τ ′ and that the set
of types that can be assigned to N are instances of τ ′′. Therefore, there are type-substitutions
S1 and S2 such that S1(τ) ≡ S2(τ ′′) and we can apply the (App) rule to deduce a type for MN

as follows:

...
∅ `M : S1(τ)→ S1(τ ′)

...
∅ ` N : S2(τ ′′) (App).

∅ `MN : S1(τ ′)

Thus the problem of deciding whetherMN is typable reduces to that of finding type-substitutions
S1 and S2 such that S1(τ) ≡ S2(τ ′′) is the most general common instance of these types.

Definition 2.2.16. A unifier of τ ∈ T and τ ′ ∈ T is a type substitution S such that S(τ) ≡
S(τ ′).

If two types have a unifier, then we say that they are unifiable and the instance that is
common to both types is their common instance.

Example 2.2.6. The following type-substitution

S = [β1 → β1/α1, α2 → β1 → β1/β2]

is a unifier of the types

α1 → α2 → α1 (β1 → β1)→ β2
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and their common instance is

(β1 → β1)→ α2 → β1 → β1.

Definition 2.2.17. The most general common instance of a pair of types (τ1, τ2) is a
common instance τ3 such that every other common instance is an instance of τ3.

Note that unifiers are not necessarily unique.

Definition 2.2.18. A type substitution S1 is the most general unifier of two types τ ∈ T
and τ ′ ∈ T if for every other unifier S2 of these two types, there is a type substitution S3 such
that S2 = S3 ◦ S1.

Theorem 2.2.4 (Unification). There is an algorithm that decides whether a pair of types (τ, τ ′)
has a unifier and if “they do” constructs its most general unifier. Also, if a pair of type (τ, τ ′)
has a unifier, then it has a most general unifier.

Proof. See Theorem 3D4 in [36].

With the addition of the following lemma we can speak of the most general unifier as if most
general unifiers were unique (see Notation 3D2.4 in [36]).

Lemma 2.2.5 (Renaming of Most General Unifiers). If a type-substitution S1 is a most general
unifier of a pair of types (τ, τ ′) and S2 is a renaming of the variables in S1(τ), then S2 ◦ S1 is a
most general unifier of (τ, τ ′).

Proof. See Lemma 3D2.3 in [36].

Note that most general unifiers do not (in general) give rise to most general common
instances.

Example 2.2.7. The most general unifier of the pair of types

(α1 → α2 → α2, (α3 → α3)→ α1)

is [(α2 → α2)/α1, α2/α3] and the common instance that is obtained from it is

(α2 → α2)→ α2 → α2.

In contrast, their most general common instance is

(α3 → α3)→ α2 → α2.

But most general unifiers and most general common instances can be reconciled through the
following lemma.
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U(α, τ) =


[τ/α] if α 6∈ Vars(τ)
id if τ = τ

fail otherwise

U(τ → τ ′, α) = U(α, τ → τ ′)

U(τ1 → τ ′1, τ2 → τ ′2) = let S = U(τ ′1, τ ′2)
in U(S(τ1), S(τ2)) ◦ S

We assume that the unification function fails if any of the recursive calls fails.

Figure 2.2: The unification algorithm for the Simply Typed λ-calculus.

Lemma 2.2.6 (Most General Unifier - Most General Common Instance). If τ ∈ T and τ ′ ∈ T
have no common variables (Vars(τ) ∩Vars(τ ′) = ∅), (τ, τ ′) has a most general unifier if and only
if it has a most general common instance, and the two are identical.

Proof. See Lemma 3D3 in [36].

Now, the problem of finding the most general common instances is reduced to that of finding
most general unifiers of pairs of types with no variables in common using Robinson’s first-order
unification algorithm [51].

Definition 2.2.19. Let τ, τ ′ ∈ T. The unification function U(τ, τ ′) that returns the most
general unifier of (τ, τ ′) is defined inductively in Figure 2.2. α 6∈ Vars(τ) is usually called an
“occur check”.

Example 2.2.8.

1) U(α1 → α1, β1 → β2) = [β1/β2, β1/α1]
1.1) U(α1, β2) = [β2/α1]
1.2) U([β2/α1](α1), [β2/α1](β1)) = [β1/β2]

The most general unifier of the pair of types (α1 → α1, β1 → β2) is [β1/β2, β1/α1] and their most
general common instance is β1 → β1.

As was stated in Theorem 2.2.4, there is an algorithm that will decide whether a given λ-term
M is typeable in the simply typed λ-calculus and if it is will output a principal deduction and
principal type for M .

Definition 2.2.20. Let M ∈ Λ. The type inference function HM(M) that returns the
principal pair (Γ, τ) for M is defined inductively in Figure 2.3.
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HM(x) = ({x : α}, α) (α fresh)

HM(M1M2) = let {x1, . . . , xn} ∈ FV(M1) ∩ FV(M2)
in let (Γ1, τ1) = HM(M1)

(Γ2, τ2) = HM(M2)
S1 = U(Γ1(x1),Γ2(x1))
S2 = U(S1(Γ1)(x1), S1(Γ2)(x1))
S3 = U(S2 ◦ S1(Γ1)(x1), S2 ◦ S1(Γ2)(x1))

...
Sn = U(Sn−1 ◦ · · · ◦ S1(Γ1)(xn), Sn−1 ◦ · · · ◦ S1(Γ2)(xn))
S0 = U(Sn ◦ · · ·S1(τ1), Sn ◦ · · · ◦ S1(τ2 → α)) (α fresh)

in (Sn ◦ · · · ◦ S1 ◦ S0(Γ1 ∪ Γ2), S0(α))

HM(λx.M) = let (Γ′, τ1) = HM(M)
in if x ∈ dom(Γ′)

then (Γ′x,Γ′(x)→ τ1)
else (Γ′, α→ τ1) (α fresh)

Figure 2.3: The type inference algorithm HM for the Simply Typed λ-Calculus.

Example 2.2.9.

1) HM((λxy.x)(λx.x)) = (∅, α2 → α3 → α3)
1.1) HM(λxy.x) = (∅, α1 → α2 → α1)
1.1.1) HM(λy.x) = ({x : α1}, α2 → α1)
1.1.1.1) HM(x) = ({x : α1}, α1)
1.2) HM(λx.x) = (∅, α3 → α3)
1.2.1) HM(x) = ({x : α3}, α3)
1.3) U(α1 → α2 → α1, (α3 → α3)→ α4) = [α2 → α1/α4] ◦ [α3 → α3/α1]
1.3.1) U(α2 → α1, α4) = [α2 → α1/α4]
1.3.1.1) U(α4, α2 → α1) = [α2 → α1/α4]
1.3.2) U([α2 → α1/α4](α1), [α2 → α1/α4](α3 → α3)) = [α3 → α3/α1]

The principal pair of (λxy.x)(λx.x) is (∅, α2 → α3 → α3).

2.3 λ-Calculus with Parametric Polymorphism

From a programming languages point-of-view, there are some terms that are not typeable in the
simply typed λ-calculus that we would like to write.

Example 2.3.1. Consider the λ-term that corresponds to the identity function λx.x.

If we apply this function to some other M ∈ Λ and β-reduce the application, we get M back
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no matter the M :

(λx.x) M →β x[M/x] ≡M.

The semantics of functions like the identity function is independent (in a type-free semantics)
of the types of their arguments. Such objects are type-polymorphic in the sense that they
belong to (or possess) more than one type. Additionally, since many of the primitives of a
programming language are naturally polymorphic, then many of the functions one can define
using those primitives will also be type-polymorphic.

Example 2.3.2.
1) HM((λy.yy)(λx.x)) = fail
1.1) HM(λy.yy) = (∅, α2 → α2)
1.1.1) HM(yy) = ({y : α2}, α2)
1.1.1.1) HM(y) = ({y : α1}, α1)
1.1.1.2) HM(y) = ({y : α2}, α2)
1.1.1.3) U(α1, α2) = [α2/α1]
1.1.1.4) U(α2, α2 → α3) = fail
1.2) HM(λx.x) = (∅, α4 → α4)
1.2.1) HM(x) = ({x : α4}, α4)

(λy.yy)(λx.x) is not typeable in the simply typed λ-calculus because y is required to have more
than one type.

In [45], Robin Milner introduced a theory of type-polymorphism for programming languages
that was originally design for the ML programming language. We will present the simple extension
of the λ-calculus in [23] obtained by the introduction of a declarative construct of the form

let x = M in N

denoting the result of evaluating N with x denoting the value of M .

This construct is semantically equivalent (in the operational sense) to the β-redex (λx.N) M ,
but in ML’s type-system let x = M in N might have a type even when (λx.N) M does not. The
reason is that x is used polymorphically in the former, but not it the latter.

Definition 2.3.1. Let x range over an infinite countable set of variables V. The of λ-terms,
denoted by Λlet, is given by the following grammar:

M ::= x (variables)
| (MM) (function application)
| λx.M (functional abstraction)
| let x = M in M (let declaration)

Many concepts from the (simply typed) λ-calculus can be extended to this calculus by simply
treating an expression of the form let x = M in N as if it was the β-redex (λx.N) M .
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For this reason, the reader may assume that the concepts introduced in the two previous
sections are also valid for this calculus, except when stated otherwise.

Instead of introducing a separate reduction rule for let-expressions that will act on let-
expressions just like β-reduction, we will treat let-expressions as β-redexes and reduce them
using β-reduction as well.

Definition 2.3.2. Let α range over an infinite countable set of type variables V. The set of
types, denoted by Tlet, is given by the following grammar:

τ ::= α (type variables)
| τ → τ (function types)

σ ::= τ (monomorphic types)
| ∀α.σ (polymorphic types)

Polymorphic types are type-schemes that represent the set of all possible types that can be
assigned to a term.

We will abbreviate a type-scheme ∀α1 · · · ∀αn.τ to ∀α1 · · ·αn.τ and call α1, . . . , αn the generic
variables of that type-scheme.

Definition 2.3.3. We say that a type-variable occurs free in a type-scheme ∀α1 . . . ∀αn.τ if
and only if it occurs in τ and is not one of the generic variables α1, . . . , αn.

Definition 2.3.4. The set of free type-variables of σ ∈ Tlet, denoted by FTV(σ), is defined
inductively as follows:

FTV(α) = {α}
FTV(τ → τ ′) = FTV(τ) ∪ FTV(τ ′)
FTV(∀α.σ) = FTV(σ) \ {α}

We say that a type σ ∈ T is closed if FTV(σ) = ∅.

We must extend the subtype-relation to type-schemes.

Definition 2.3.5. We say that σ ∈ Tlet is a subtype of σ′ ∈ Tlet, denoted by σ vtype σ
′, if

σ ∈ Subtype(σ′), where Subtype(σ′), the collection of subtypes of σ′, is defined inductively as
follows:

Subtype(α) = {α}
Subtype(τ → τ ′) = Subtype(τ) ∪ Subtype(τ ′) ∪ {τ → τ ′}

Subtype(∀α.σ) = Subtype(σ) ∪ {∀α.σ}

Definition 2.3.6. We say that a typing environment Γ is closed if ∀x ∈ dom(Γ), Γ(x) is closed.
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(x : σ) ∈ Γ (Var)Γ `let x : σ

Γ `let M : σ α 6∈ FTV(Γ) (Gen)Γ `let M : ∀α.σ

Γ `let M : ∀α.σ (Inst)Γ `let M : σ[τ/α]

Γ `let M : τ → τ ′ Γ `let N : τ (App)
Γ `let (MN) : τ ′

Γ{x : τ} `let M : τ ′ (Abs)
Γ `let λx.M : τ → τ ′

Γ `let M : σ Γ ∪ {x : σ} `let N : τ (Let)Γ `let let x = M in N : τ

Figure 2.4: Typing rules for the λ-Calculus with Parametric Polymorphism.

Given a type-scheme σ we will let a substitution S act on σ by acting on the free variables of
σ while renaming (if necessary) the generic variables of σ to avoid clashes with variables involved
in S.

Definition 2.3.7. An assumption scheme is a type-declaration with a type scheme as its
predicate.

Definition 2.3.8. We say that a type τ ∈ Tlet is a generic instance of a type-scheme σ ∈ Tlet
if and only if σ = τ or σ = ∀α1, . . . , αn.τ

′ and there exists a type-substitution S such that
τ = S(τ ′).

Definition 2.3.9. Let V be a given set of type-variables and τ ∈ Tlet:

• The closure of τ under V , denoted by V (τ), is the type-scheme ∀α1 · · ·αn.τ where
α1, . . . , αn are all the type-variables occurring in τ that are not in V .

• For any typing environment Γ, Γ(τ) denotes the closure of τ under (the set of type-variables
that occur in) Γ.

Definition 2.3.10. We say that M ∈ Λlet can be assigned the type τ ∈ Tlet according to the
type assignment Γ, if the statement M : τ can be derived from Γ using the typing rules in
Figure 2.4.

Definition 2.3.11. A principal type-scheme of a term M ∈ Λlet with respect to a typing
environment Γ is a type-scheme σ ∈ Tlet such that:

• Γ `let M : σ.
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W(Γ, x) = if (x : ∀α1, . . . , αn.τ) ∈ Γ (1 ≤ i ≤ n)
then (id, [β1/α1, . . . , βn/αn](τ)) (β1, . . . , βn fresh)
else fail

W(Γ,MN) = let (S1, τ1) = W(Γ,M)
(S2, τ2) = W(S1(Γ), N)
S0 = U(S2(τ1), τ2 → β) (β fresh)

in (S0 ◦ S2 ◦ S1, S0(β))

W(Γ, λx.M) = let (S, τ) = W(Γx ∪ {x : β},M) (β fresh)
in (S, S(β)→ τ)

W(Γ, let x = M in N) = let (S1, τ1) = W(Γ,M)
(S2, τ2) = W(S1(Γx) ∪ {x : S1(Γ)(τ1)}, N)

in (S2 ◦ S1, τ2)

Figure 2.5: The type inference algorithm W for the λ-Calculus with Parametric Polymorphism.

• If Γ `let M : σ′ for some type-scheme σ ∈ Tlet, then σ′ is a generic instance of σ.

In contrast with the type inference algorithm for the simply typed λ-calculus, which could
be used to find the principal type of a term, it is not possible for a type-scheme inference
algorithm to do the same. We can derive type-schemes for the term ((λxy.x) (fz))(fw) if we
assume, e.g., either f : ∀α.α → α or f : ∀α.α → β. It is however easy to see that there is not
a more general assumption scheme about f except for the trivial f : ∀α.α, from which a type
for ((λxy.x) (fz))(fw) can be derived using the typing rules, and which includes as generic
instances all generic instance of both ∀α.α→ α and ∀α.α→ β.

Also in contrast with what we have seen for the simply typed λ-calculus, if a type scheme
can be inferred for a term from a particular typing environment then it admits a principal
type-scheme under those assumptions. For this reason it is natural that a type-scheme inference
algorithm should take as arguments not only a λ-term but also a typing environment.

Definition 2.3.12. Let Γ be a type assignment, M ∈ Λlet and τ ∈ Tlet. The type-scheme
inference function W(Γ,M) that returns a pair (S, τ) such that S(Γ) `let M : τ is defined
inductively in Figure 2.5.

Theorem 2.3.1 (Soundness of W ). If W(Γ,M) succeeds with (S, τ) then there is a derivation
S(Γ) `let M : τ .

Proof. See Chapter II, Theorem 2 in [23].

Theorem 2.3.2 (Completeness of W ). Given a typing environment Γ and a term M ∈ Λlet, let
Γ′ be an instance of Γ and σ ∈ Tlet be a type-scheme such that Γ′ `let M : σ:
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• W(Γ,M) succeeds.

• If W(Γ,M) = (S, τ), then, for some substitution S′, Γ′ = S′ ◦ S(Γ) and σ is a generic
instance of S′ ◦ S(Γ)(τ).

Proof. See Chapter II, Theorem 3 in [23].

Corollary 2.3.2.1. If W(Γ,M) = (S, τ), then S(Γ)(τ) is the principal type-scheme of M under
Γ.

Proof. See Chapter II, Corollary 1 in [23].

Example 2.3.3.

1) W(∅, let y = λx.x in yy) = ([α4/α2, α3 → α3/α4], α3 → α3)
1.1) W(∅, λx.x) = (id, α1 → α1)
1.1.1) W({x : α1}, x) = (id, α1)
1.2) W({y : ∀α1.α1 → α1}, yy) = ([α4/α2, α3 → α3/α4], α3 → α3)
1.2.1) W({y : ∀α1.α1 → α1}, y) = (id, α2 → α2)
1.2.2) W({y : ∀α1.α1 → α1}, y) = (id, α3 → α3)
1.2.3) [α4/α2, α3 → α3/α4] = U(α2 → α2, (α3 → α3)→ α4)

let y = λx.x in yy ∈ Λlet is semantically equal to (λy.yy) (λx.x) ∈ Λ from Example 2.3.2, but it
is typeable in this calculus, while the latter is not.

From Corollary 2.3.2.1, we get that ∀α3.α3 → α3 is the principal type-scheme of let y =
λx.x in yy with respect to the empty typing-environment.

2.4 λ-Calculus with Polymorphic Records

Labeled records are widely used data structures and are essential building blocks in various
data-intensive applications such as database programming. The ML programming language
contains labeled records, but their allowable operations are restricted to monomorphic ones.
In [46], Atsushi Ohori introduced a let-polymorphic record calculus that extends the previous
calculus with labeled records and polymorphic operations over those records.

Example 2.4.1. Consider the following simple function on records:

(λx.x).A

where x.A corresponds to selecting the A field from the record x. This function is polymorphic
in the sense that it can be applied to terms of any record type containing a A field, such as
{A : α1, B : α2} or {A : α1, C : α3}.
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Record-polymorphism is based on the idea that labeled-field access is polymorphic and
can therefore be applied to any labeled data structure containing the specified field, just like we
have seen in the previous example. This form of polymorphism can be captured by defining a
subtyping relation and allowing a value to have all its “supertypes”. However, in the presence
of subtyping, a static type (i.e. a type that is know at compile time) no longer represents the
exact record structure of a runtime value.

Example 2.4.2. Let x : α1, y : α2 and z : α3, the following term

if true then {A = x,B = y} else {B = y, C = z}

has a type {B : α2}, but its runtime value will presumably be {A = x,B = y}.

An alternative approach is to extend ML-style polymorphic typing directly to record-
polymorphism. In these type-systems, a most general polymorphic type-scheme can be inferred
for any typeable untyped term containing operations on records. By an appropriate instantiation
of the inferred type-scheme, an untyped term can safely be used as a value of various different
types. This approach not only captures the polymorphic nature of functions on records but also
integrates record-polymorphism and ML-style type-scheme inference [46].

Most of the proposed type inference systems have been based on the mechanism of row
variables, which are variables ranging over finite sets of field types. In [46], instead of row
variables, restrictions are placed on possible instantiations of type variables using a kind-system of
types that refines ordinary type-quantification to kinded-quantification of the form ∀α :: κ.σ
where variable α is constrained to range only over the set of types denoted by a kind κ. This
mechanism is analogous to bounded quantification [16].

Definition 2.4.1. Let x range over an infinite countable set of variables V and l range over an
infinite countable set of labels L. The set of λ-terms, denoted by ΛO, is given by the following
grammar:

M ::= cb (constants)
| x (variables)
| (MM) (function application)
| λx.M (functional abstraction)
| let x = M in M (let declaration)
| {l = M, . . . , l = M} (records)
| M.l (field selection)
| modify(M, l,M) (field update)

where b is a base type from a set of base types B.

Example 2.4.3. The following are all well-formed terms from ΛO:

λxy.let name = λz.(z.Name) in name {Name = x,Address = y}

λxyz.let update = λxy.modify(x,Address, y) in (update {Name = x,Address = y}) z
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Definition 2.4.2. Let α range over an infinite countable set of type variables A, l range over
an infinite countable set of labels L and b range over a set of base types B. The set of types,
denoted by TO, and the set of kinds, denoted by KO, are given by the following grammar:

τ ::= b (base types)
| α (type variables)
| τ → τ (function types)
| {l : τ, . . . , l : τ} (record types)

σ ::= τ (monomorphic types)
| ∀α :: κ.σ (polymorphic types)

κ ::= U (universal kind)
| {{l : τ, . . . , l : τ}} (record kinds)

The universal kind represents the set of all types and a record kind of the form {{l1 : τ1, . . . , ln : τn}}
represents the set of structures that have at least fields l1, . . . , ln of types τ1, . . . , τn, respectively.
We assume that the labels that appear in any type or kind are always pairwise distinct.

This calculus is an extension of the calculus presented in Section 2.3 and many of the concepts
that are valid for that calculus can be extended for this calculus. For this reason, the reader
may assume that the concepts introduced in the previous sections are also valid for this calculus,
except when stated otherwise.

We need to extend the set of free type variables from Definition 2.3.4 to cover records and
kinds.

Definition 2.4.3. The set of free type-variables of a type σ ∈ TO, denoted by FTV(σ), is
defined inductively as follows:

FTV(α) = {α}
FTV(τ → τ ′) = FTV(τ) ∪ FTV(τ ′)

FTV({l1 : τ1, . . . , ln : τn}) = FTV(τ1) ∪ · · · ∪ FTV(τn)
FTV(∀α :: κ.σ) = FTV(κ) ∪ (FTV(σ) \ {α})

The set of free type-variables of a kind κ ∈ K, denoted FTV(κ), is defined inductively as
follows:

FTV(U) = ∅
FTV({{l1 : τ1, . . . , ln : τn}}) = FTV(τ1) ∪ · · · ∪ FTV(τn)

Note that the type construct ∀α :: κ.σ binds the type variable α in σ, but not in κ.

Example 2.4.4. Let l ∈ L.

FTV(∀α1 :: {{l : α2 → α2}}.α1 → α3) = {α2, α3}
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We need to extend the subtype relation to record types.

Definition 2.4.4. We say that σ ∈ TO is a subtype of σ′ ∈ TO, denoted by σ vtype σ
′, if

σ ∈ Subtype(σ′), where Subtype(σ′), the collection of subtypes of σ′, is defined inductively as
follows:

Subtype(α) = {α}
Subtype(τ → τ ′) = Subtype(τ) ∪ Subtype(τ ′) ∪ {τ → τ ′}

Subtype(∀α.σ) = Subtype(σ) ∪ {∀α.σ}
Subtype({l1 : τ1, . . . , ln : τn}) = Subtype(τ1) ∪ . . . ∪ Subtype(τn) ∪ {{l1 : τ1, . . . , ln : τn}}

Definition 2.4.5. Let α ∈ A and κ ∈ K. A kind-declaration is a statement of the form α :: κ,
where α is the subject and κ the predicate of the statement.

Definition 2.4.6. A kinding environment, denoted by K, is any finite (possibly empty) set
of kind-declarations {α1 :: κ1, . . . , αn :: κn} with distinct type-variables as subjects.

Definition 2.4.7. Let K = {α1 :: κ1, . . . , αn :: κn} be a kinding environment:

• The domain of K, denoted dom(K), is {α1, . . . , αn}.

• K(αi) = κi, 1 ≤ i ≤ n.

• The result of removing the kind-declaration whose subject is α (when it exists) from K,
denoted Kα, is K \ {α :: K(α)}.

Any type variables that appear in a kind assignment K must also be properly kinded by K
itself.

Definition 2.4.8. We say that a kinding environment K is well-formed if for all α ∈ dom(K),
FTV(K(α)) ⊆ dom(K).

From now on, every kinding environment can be assumed to be well-formed unless stated
otherwise.

Notation 2.4.1. We write K{α :: κ} for K ∪ {α :: κ} if K is well-formed, α 6∈ dom(K), and
FTV(κ) ⊆ dom(K).

Definition 2.4.9. A type τ ∈ TO is well-formed under a kinding environment K if FTV(σ) ⊆
dom(K).

The previous definition is naturally extended to other syntactic constructs containing types,
except for type-substitutions whose well-formedness condition is defined separately.
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Definition 2.4.10. A type τ ∈ TO has a kind κ ∈ K under a kinding assignment K, denoted
by K 
O τ :: κ, if it is derivable by the following set of kinding rules:

K 
O τ :: U if τ is well-formed under K
K 
O α :: {{l1 : τ1, . . . , ln : τn}} if K(α) = {{l1 : τ1, . . . , ln : τn}}
K 
O {l1 : τ1, . . . , ln : τn, . . .} :: {{l1 : τ1, . . . , ln : τn}}

if {l1 : τ1, . . . , ln : τn, . . .} is well-formed under K

Note that, if K 
O τ :: κ for some kind assignment K, σ ∈ TO and κ ∈ K, then τ and κ are
well-formed under K.

Example 2.4.5. Let l1, l2 ∈ L:

{α1 :: {{l1 : α2}}, α2 :: U} 
O α1 → α2 :: U
{α1 :: U} 6
O {l1 : α1, l2 : α2} :: {{l1 : α1, l2 : α2}}

Since in this type discipline type-variables are kinded by a kinding assignment, our previous
notion of substitution need to be refined by incorporating kind constraints.

Definition 2.4.11. A type-substitutions S is well-formed under a kinding environment K if for
all α ∈ dom(S), S(α) is well-formed under K.

Definition 2.4.12. A kinded substitution is a pair (K,S) of a kinding environment K and a
substitution S that is well-formed under K.

The kinding environmentK in (K,S) specifies kind constraints of the result of the substitution.

A kinded substitution (K,S) is ground if K = ∅. We will write S for a ground kind
substitution (∅, S).

Definition 2.4.13. A kinded substitution (K1, S) respects a kinding environment K2 if for all
α ∈ dom(K2), K1 
O S(α) :: S(K2(α)).

This notion specifies the condition under which a substitution can be applied, i.e. if a kinded
substitution (K1, S) respects K then it can be applied to a type σ kinded by K, yielding a type
S(σ) kinded by K1.

Example 2.4.6. Let l1, l2 ∈ L, K = {α1 :: U , α2 :: U} and S = [{l1 : α1, l2 : α2}/α3]. (K,S)
respects K ′ = {α :: {{l1 :: α1, l2 : α2}}, α1 :: U , α2 :: U}.

Lemma 2.4.1. If K 
O τ :: κ and a kinded substitution (K1, S) respects K, then K1 
O S(τ) ::
S(κ).

Proof. See Lemma 2.1.1 in [46].
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Corollary 2.4.1.1. If (K1, S1) respects K and (K2, S2) respects K1, then (K2, S2 ◦S1) respects
K.

A proof for this corollary was not provided by Ohori in [46] so we provide one here.

Proof. Since (K1, S1) respects K, we know that ∀α ∈ dom(K),K1 
O S1(α) :: S1(K(α)). Since
(K2, S2) respects K1, we also know that ∀α ∈ dom(K1),K2 
O S2(α) :: S2(K1(α)). But, since
we know that (K2, S2) respects K1, we have that K2 
O S2 ◦ S1(α) :: S2 ◦ S1(K(α)). Therefore,
∀α ∈ dom(K),K2 
O S2 ◦ S1(α) :: S2 ◦ S1(K(α)) and (K2, S2 ◦ S1) respects K.

A kinding environment is regarded as a constraint on possible substitutions of type-variables,
i.e., to those that respect it. Definition 2.4.8 allows a cyclic kinding environment like {α1 :: {{l1 :
α2}}, α2 :: {{l2 : α1}}, which is (in some sense) useless since there is no ground substitution that
respects it. A stronger well-formedness condition for kinding environments that would not allow
this to happen was not adopted in [46] for performance reasons. This approach however does not
change the set of derivable closed typings and still yields a sound type system that detects all
the type errors of a program [46].

Since in this type-system types may depend on type-variables other than their own free
type-variables, we need to extend the notion of free type-variables of a type.

Definition 2.4.14. Let σ ∈ TO be well-formed under a kinding environment K. The set of
essentially free type-variables of σ under K, denoted by EFTV(K,σ), is the smallest set
satisfying:

• FTV(σ) ⊆ EFTV(K,σ).

• If α ∈ EFTV(K,σ), then FTV(K(α)) ⊆ EFTV(K,σ).

Intuitively, α ∈ EFTV(K,σ) if σ ∈ TO contains α either directly or through kind constrains
specified by K.

Example 2.4.7. The type-variable α1 is essentially free in α2 under {α1 :: U , α2 :: {{l : α1}}.

This notion naturally extends to other syntactic structures containing types.

We need to extend the notion of a generic instance of a type from Definition 2.3.8 by
incorporating kinds.

Definition 2.4.15. Let σ1 ∈ TO be a polymorphic type well-formed under a kind assignment
K. We say that σ2 ∈ TO is a generic instance of σ1 under K, denoted by K 
O σ1 ≥ σ2, if
σ1 = ∀α1 :: κ1

1 · · · ∀α1
n :: κ1

n.τ1, σ2 = ∀β1 :: κ2
1 · · · ∀βm :: κ2

m.τ2 and there is a type substitution S
such that dom(S) = {α1

1, . . . , α
1
n}, (K{β1 :: κ2

1, . . . , βn :: κ2
m}, S) respects K{α1 :: κ1

1, . . . , αn ::
κ1
n}, and τ2 = S(τ1).
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Example 2.4.8. The type α1 → {l1 : α1, l2 : α2} ∈ TO is a generic instance of ∀β1 :: U .∀β2 ::
{{l1 : α1, l2 : α2}}.β1 → β2 under K = {α1 : U , α2 : U}.

Lemma 2.4.2. If K 
O σ1 ≥ σ2 and K 
O σ2 ≥ σ3 then K 
O σ1 ≥ σ3.

A proof for this lemma was not provided by Ohori in [46] so we provide one here.

Proof. Without loss of generality, let us assume that σ1 = ∀α1
1 :: κ1

1 · · · ∀α1
n :: κ1

n.τ1, σ2 = ∀α2
1 ::

κ2
1 · · · ∀α2

m :: κ2
m.τ2, and σ3 = ∀α3

1 :: κ3
1 · · · ∀α3

k :: κ3
k.τ3. Since K 
O σ1 ≥ σ2, we know that

there exists a substitution S1 such that dom(S1) = {α1
1, . . . , α

1
n}, (K{α2

1 :: κ2
1, . . . , α

2
m :: κ2

m}, S1)
respects K{α1

1 :: κ1
1, . . . , α

1
n :: κ1

n} and τ2 = S1(τ1). Since K 
O σ2 ≥ σ3, we know that
there exists a substitution S2 such that dom(S2) = {α2

1, . . . , α
2
m}, (K{α3

1 :: κ3
1, . . . , α

3
k :: κ3

k}, S2)
respects K{α2

1 :: κ2
1, . . . , α

2
m :: κ2

m} and τ3 = S2(τ2). To show that K 
O σ1 ≥ σ3, we just
need to find a substitution S3, such that dom(S3) = {α1

1, . . . , α
1
n}, (K{α3

1 :: κ3
1, . . . , α

3
k :: κ3

k}, S3)
respects K{α1

1 :: κ1
1, . . . , α

1
n :: κ1

n}, and τ3 = S3(τ1). If we choose S3 = S2 ◦ S1, then dom(S3) =
dom(S1) = {α1

1, . . . , α
1
n}. By Corollary 2.4.1.1, we have that (K{α3

1 :: κ3
1, . . . , α

3
k :: κ3

k}, S2 ◦ S1)
respects K and τ3 = S3(τ1) = S2 ◦ S1(τ1) = S2(S1(τ1)) = S2(τ2).

We also need to extend the notion of the closure of a type from Definition 2.3.9 by incorporating
kinds.

Definition 2.4.16. The closure of τ ∈ TO under a typing environment Γ and a kinding
environment K, denoted by Cls(K,Γ, τ), is a pair (K ′,∀α1 :: κ1 · · · ∀αn :: κn.τ) such that
K ′{α1 :: κ1, . . . , αn :: κn} = K and {α1, . . . , αn} = EFTV(K, τ) \ EFTV(K,Γ).

Example 2.4.9.

Cls(K,Γ, α3 → α4) = ({α1 :: U , α2 :: U}, ∀α3 :: U .∀α4 :: {{l1 : α1, l2 :: α2}}.α3 → α4).

Definition 2.4.17. We say that M ∈ ΛO can be assigned the τ ∈ TO according to the kinding
assignment K and the typing assignment Γ, if the statement M : τ can be derived form K,Γ
using the typing rules in Figure 2.6.

Note that if K,Γ `O M : τ and Cls(K,Γ, τ) = (K ′, σ) then Γ and σ are well-formed under
K ′.

Example 2.4.10. Let Γ = {x : α, y : β} and K = {α :: U , β :: U}. We can deduce {l1 = x, l2 =
y}.l1 : α from K,Γ as follows:

K 
O α ≥ α (Var)
K,Γ `O x : α

K 
O β ≥ β (Var)
K,Γ `O y : β (Rec)

K,Γ `O {l1 = x, l2 = y} : {l1 : α, l2 : β} K 
O {l1 : α, l2 : β} :: {{l1 :: α}} (Sel)
K,Γ `O {l1 = x, l2 = y}.l1 : α

The following lemma shows that typings are closed under kind-respecting kinded substitutions.
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Γ is well-formed under K (Const)
K,Γ `O cb : b

K 
O Γ(x) ≥ τ Γ is well-formed under K (Var)
K,Γ `O x : τ

K,Γ `O M : τ Cls(K,Γ, τ) = (K ′, σ) (Gen)
K ′,Γ `O M : σ

K,Γ `O M : τ → τ ′ K,Γ `O N : τ (App)
K,Γ `O MN : τ ′

K,Γ{x : τ} `O M : τ ′ (Abs)
K,Γ `O λx.M : τ → τ ′

K,Γ `O M : σ K,Γ{x : σ} `O N : τ (Let)
K,Γ `O let x = M in N : τ

K,Γ `O Mi : τi (1 ≤ i ≤ n) (Rec)
K,Γ `O {l1 : M1, . . . , ln : Mn} : {l1 : τ1, . . . , ln : τn}

K,Γ `O M : τ K 
O τ :: {{l : τ ′}} (Sel)
K,Γ `O M.l : τ ′

K,Γ `O M : τ K,Γ `O N : τ ′ K 
O τ :: {{l : τ ′}} (Modif)
K,Γ `O modify(M, l,N) : τ

Figure 2.6: Typing rules for the λ-Calculus with Polymorphic Records.

Lemma 2.4.3. If K1,Γ `O M : τ and (K2, S) respects K1, then K2, S(Γ) `O M : S(τ).

Proof. See Lemma 2.2.3 in [46].

In this type-system, polymorphic generalization and let abstraction are separated into two
rules. It is possible to combine the two into a single rule, but it makes it harder to prove various
properties that can be easily proved by induction on typing derivations.

The following lemma allows us to strengthen the type assignment.

Lemma 2.4.4. If K,Γ{x : σ1} `O M : τ and K 
O σ2 ≥ σ1, then K,Γ{x : σ2} `O M : τ .

Proof. See Lemma 3.1.2 in [46].

To establish a stronger property of type soundness than the subject reduction property, a
call-by-value operational semantics using evaluation contexts was introduced in [46] and its type
soundness theorem (with respect to that semantics) was proved.
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In order to develop a type inference algorithm for this type system, Robinson’s unification
algorithm must be refined in order to incorporate kind constraints on type-variables.

Definition 2.4.18. A kinded set of equations is a pair (K,E) consisting of a kind assignment
K and a set E of pairs of types such that E is well-formed under K.

Definition 2.4.19. We say that a type-substitution S satisfies a set of pairs of types E if
S(τ1) = S(τ2) for all (τ1, τ2) ∈ E.

We need to extend the notion of unifier from Definition 2.2.16 and of most general unifier
from Definition 2.2.18 to incorporate kinds.

Definition 2.4.20. A kinded substitution (K1, S1) is a unifier of a kinded set of equations
(K2, E) if it respects K2 and if S1 satisfies E.

Definition 2.4.21. A kinded substitution (K1, S1) is the most general unifier of a kinded
set of equations (K2, E) if it is a unifier of (K2, E) and if for any unifier (K3, S2) of (K2, E) there
is some type substitution S3 such that (K3, S3) respects K1 and S2 = S3 ◦ S1.

We will present the kinded unification algorithm in the same style as it was presented
in [46], i.e., by transformation. Each rule transforms a 4-tuple of the form (E,K, S, SK) consisting
of a set E of type equations, a kinding environmentK, a type-substitution S, and a (not necessarily
well-formed) kinding environment SK. The roles of these components are the following:

• E keeps the set of equations to be unified;

• K specifies kind constraints to be verified;

• S records “solved” equations as a form of substitution;

• SK record “solved” kind constraints that have already been verified for S.

When specifying rules, we treat K, SK and S as sets of pairs. We also use the following notations.

Notation 2.4.2. Let F range over functions from a finite set of labels to types.

• We write {F} and {{F}} to denote the record type identified by F and the record kind
identified by F , respectively.

• For two functions F1 and F2 we write F1 ± F2 for the function F such that dom(F) =
dom(F1) ∪ dom(F2) and such that for l ∈ dom(F), F(l) = F1(l) if l ∈ dom(F1); otherwise
F(l) = F2(l).

Definition 2.4.22. Let (K,E) be a given kinded set of equations. The kinded unification
function U(E,K) that takes a any kinded set of equations, computes a most general unifier if
one exists, and reports failure otherwise is defined by the transformation rules in Figure 2.7.
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(E ∪ {(τ, τ)},K, S, SK) ⇒U (E,K, S, SK)

(E ∪ {(α, τ)},K ∪ {(α,U)}, S, SK) ⇒U ([τ/α]E, [τ/α]K, [τ/α]S ∪ {(α, τ)},
[τ/α](SK) ∪ {(α,U)})
if α ∈ FTV(τ)

(E ∪ {(α1, α2)},
K ∪ {(α1, {{F1}}), (α2, {{F2}})}, S, SK) ⇒U ([α2/α1](E ∪ {(F1(l),F2(l)) | l ∈ dom(F1) ∩ dom(F2)}),

[α2/α1](K) ∪ {(α2, [α2/α1]({{F1 ± F2}}))},
[α2/α1](S) ∪ {(α1, α2)}, [α2/α1](SK) ∪ {(α1, {{F1}})})

(E ∪ {(α, {F2})},K ∪ {(α, {{F1}})}, S) ⇒U ([{F2}/α](E ∪ {(F1(l),F2(l)) | l ∈ dom(F1)}),
[{F2}/α](K), [{F2}/α](S) ∪ {(α, {F2)})},
[{F2}(SK) ∪ {(α1, {{F1}})})
if dom(F1) ⊆ dom(F2) and α 6∈ FTV({F2})

E ∪ {({F1}, {F2})},K, S, SK) ⇒U (E ∪ {(F1(l),F2(l)) | l ∈ dom(F1)},K, S, SK)
if dom(F1) = dom(F2)

(E ∪ {(τ1
1 → τ2

1 , τ
1
2 → τ2

2 },K, S, SK) ⇒U (E ∪ {(τ1
1 , τ

1
2 ), (τ2

1 , τ
2
2 )},K, S, SK)

For a notation of the form X ∪ Y on the left hand side of each rule, we assume that X and Y
are disjoint.

Figure 2.7: The unification algorithm for the λ-Calculus with Polymorphic Records.

Example 2.4.11.

({(α1, α2)}, {α1 :: {{l1 : α3}}, α2 :: {{l1 : α4, l2 : α3}}, α3 :: U , α4 :: U}, ∅, ∅)⇒U
({(α3, α4)}, {α2 :: {{l1 : α4, l2 : α3}}, α3 :: U , α4 :: U}, {(α1, α2)}, {(α1, {{l1 : α3}})})⇒U
(∅, {α2 :: {{l1 : α4, l2 : α4}}, α4 :: U}, {(α3, α4), (α1, α2)}, {(α1, {{l1 : α3}})})

The most general unifier of the kinded set of equations

({α1 :: {{l1 : α3}}, α2 :: {{l1 : α4, l2 : α3}}, α3 :: U , α4 :: U}, {(α1, α2)})

is the kinded substitution

({α2 :: {{l1 : α4, l2 : α4}}, α4 :: U}, {(α3, α4), (α1, α2)}).

Theorem 2.4.5. The kinded unification algorithm U takes any kinded set of equations, computes
a most general unifier if one exists, and reports failure otherwise.

Proof. See Theorem 3.4.1 in [46].

A stronger occur check condition could have been chosen when eliminating a type variable.
This would correspond to not allowing kinding environments with cyclic dependencies but would
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increase the complexity of the unification algorithm and the typeability on closed terms does not
change [46].

Using the kinded unification algorithm, we can extend the type-scheme inference algorithm
we have previously defined, with record-polymorphism. The kinded type inference algorithm
infers the principal typing of a given term in ΛO.

Definition 2.4.23. Let Γ be a type assignment, K be a kinding environment, M ∈ ΛO and
τ ∈ TO. The kinded type inference function WK(K,Γ,M) that returns the triple (K ′, S, τ)
such that K ′, S(Γ) `O M : τ is defined inductively in Figure 2.5.

Theorem 2.4.6. Given a kinding environment K, a type assignment Γ and M ∈ ΛO. If
WK(K,Γ,M) = (K ′, S, τ) then the following properties hold:

• (K ′, S) is a kinded substitution that respects K and K ′, S(Γ) `O M : τ .

• If K0, S0(Γ) `O M : τ0 for some kinded substitutions (K0, S0) and τ0 ∈ TO such that
(K0, S0) respectsK, then there is some type substitution S′ such that the kinded substitution
(K0, S

′) respects K ′, τ0 ≡ S′(τ), and S0(Γ) = S′ ◦ S(Γ).

If WK(K,Γ,M) fails, then there is no kinded substitution (K0, S0) and τ0 such that (K0, S0)
respects K and K0, S0(Γ) `O M : τ0.

Proof. See Theorem 3.5.1 in [46].

Example 2.4.12. Let Γ = {x : α, y : β} and K = {α :: U , β :: U}.

1) WK(K,Γ, {l1 = x, l2 = y}.l1) = (K, [{l1 : α, l2 : β}/α2, α/α1], α)
1.1) WK(K,Γ, {l1 = x, l2 = y}) = (K, id, {l1 : α, l2 : β})

1.1.1) WK(K,Γ, x) = (K, id, α)
1.1.2) WK(K,Γ, y) = (K, id, β)
1.2) U(K{α1 :: U , α2 :: {{l1 : α1}}}, {(α2, {l1 : α, l2 : β}) = (K, [{l1 : α, l2 : β}/α2, α/α1])

The principal typing of {l1 = x, l2 = y}.l1 is (K, [{l1 : α, l2 : β}/α2, α/α1], α).

This concludes the background chapter. Again, we would like to point the reader to the
work of Barendregt [7] for a more complete introduction to the lambda calculus, the work of
Hindley [36] for a more complete introduction to the simply typed lambda calculus, both the
paper by Damas an Milner [24] and the latter’s PhD thesis [23] for a more complete overview of
the let-polymorphic lambda calculus, and the work by Ohori [46] for a more complete overview
of his polymorphic record calculus. In the next chapter we will introduce the EVL language for
dealing with events.
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WK(K,Γ, x) = if x 6∈ dom(Γ) then fail
else let ∀α1 :: κ1 · · · ∀αn :: κn.τ = Γ(x),

S = [β1/α1, . . . , βn/αn] (β1, . . . , βn are fresh)
in (K{β1 :: S(κ1), . . . , βn :: S(κn)}, id, S(τ))

WK(K,Γ,M1 M2) = let (K1, S1, τ1) = WK(K,Γ,M1)
(K2, S2, τ2) = WK(K1, S1(Γ),M2)
(K3, S3) = U(K2{α :: U},

{(S2(τ1), τ2 → α)}) (α is fresh)
in (K3, S3 ◦ S2 ◦ S1, S3(α))

WK(K,Γ, λx.M) = let (K1, S1, τ) = WK(K{α :: U},Γ{x : α},M) (α fresh)
in (K1, S1, S1(α)→ τ)

WK(K,Γ, let x = M1 in M2) = let (K1, S1, τ1) = WK(K,Γ,M1)
(K′1, σ) = Cls(K1, S1(Γ), τ1)
(K2, S2, τ2) = WK(K′1, S1(Γ){x : σ},M2)

in (K2, S2 ◦ S1, τ2)

WK(K,Γ, {l1 = M1, . . . , ln = Mn}) = let (K1, S1, τ1) = WK(K,Γ,M1)
(Ki, Si, τi) = WK(Ki−1, Si−1 ◦ · · · ◦ S1(Γ),Mi) (2 ≤ i ≤ n)

in (Kn, Sn ◦ · · · ◦ S2 ◦ S1,

{l1 : Sn ◦ · · · ◦ S2(τ1), . . . , li : Sn ◦ · · · ◦ Si+1(τi), . . . , ln : τn})

WK(K,Γ,M.l) = let (K1, S1, τ1) = WK(K,Γ,M)
(K2, S2) = U(K1{α1 :: U , α2 :: {{l : α1}}},

{(α2, τ1)}) (α1, α2 fresh)
in (K2, S2 ◦ S1, S2(α1))

WK(K,Γ,modify(M1, l,M2)) = let (K1, S1, τ1) = WK(K,Γ,M1)
(K2, S2, τ2) = WK(K1, S1(Γ),M2)
(K3, S3) = U(K2{α1 :: U , α2 :: {{l : α1}}},

{(α1, τ2), (α2, S2(τ1))})
(α1, α2 are fresh)

in (K3, S3 ◦ S2 ◦ S1, S3(α2))

It is implicitly assumed that the algorithm fails if unification or any of its recursive calls fail.

Figure 2.8: The type inference algorithm WK for the λ-Calculus with Polymorphic Records.
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The EVL language for events

In this chapter we define EVL, a higher-order polymorphic typed language, designed to facilitate
the specification and processing of events. This language is an extension of a restriction of Ohori’s
original ML-style polymorphic record calculus. Although our type system is very much based on
that system, it is not meant to be a general language, but rather a language purposely designed
for dealing with events.

3.1 Terms

Definition 3.1.1. Let x range over an infinite countable set of variables V and l range over
an infinite countable set of labels L. The set of EVL-terms, denoted by ΛEVL, is given by the
following grammar:

M ::= cb (constants)
| x (variables)
| (MM) (function application)
| λx.M (functional abstraction)
| let x = M in M (let declaration)
| {l = M, . . . , l = M} (records)
| M.l (field selection)
| modify(M, l,M) (field update)
| if M then M else M (conditional branching)
| letEv x = M in M (event declaration)

where b is a base type from a set of base types B that will always include at least the boolean
base type Bool.

Notation 3.1.1. We will assume the following equivalences:

let fx1 . . . xn = M in N ≡ let f = λx1 . . . xn.M in N
letEv fx1 . . . xn = M in N ≡ letEv f = λx1 . . . xn.M in N

37
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In addition, we will convention that event-names will always start with a capital letter to help
distinguish them from functions.

Other potentially useful constructors to the language like tuples and projections were not
added to the language to keep it minimal. Nevertheless, pairs (M,N) can be encoded as records
of the form {fst = M, snd = N} and projections π1(M,N) and π2(M,N) can be encoded using
field selections {fst = M, snd = N}.fst and {fst = M, snd = N}.snd. And this encoding can be
trivially extended to tuples in general. For this reason, we will use this encoding when writing
examples whenever necessary.

Example 3.1.1. Let location,fire_danger ∈ L and String ∈ B. The following is a well-formed
term from ΛEVL:

letEv FireDanger l d = {location = l,fire_danger = d} in FireDanger "Porto"String "low"String

Another convenient encoding we are going to use is for lists. The empty list can be encoded
as the record {empty = TrueBool} and the list whose head is the M ∈ ΛEVL and tail is N ∈ ΛEVL

can be encoded as the record {empty = FalseBool,head = M, tail = N}.

Notation 3.1.2. We will also consider the following equivalences, for readability purposes:

nil ≡ {empty = TrueBool}

cons ≡ λxy.{empty = FalseBool, head = x, tail = y}.

The fact that a more realistic approach to adding lists to the language is not adopted lays
in the fact that it is intended to be minimal. For this reason we refrain from adding lists (and
recursive types) as primitive notion of the language and instead assume that nil, cons ∈ V and
that the following type-declarations are present in every typing environment:

nil : {empty : Bool}
cons : ∀α :: U .β :: {{empty : Bool}}.α→ β → {empty : Bool, head : α, tail : β}.

3.2 Types and Kinds

Definition 3.2.1. Let α range over an infinite countable set of type variables A, l range over
an infinite countable set of labels L and b range over a set of base types B. The set of types,
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denoted by TEVL, and the set of kinds, denoted by KEVL, are given by the following grammar:

τ ::= b (base types)
| α (type variables)
| τ → τ (function types)
| {l : τ, . . . , l : τ} (record types)

σ ::= τ (monomorphic types)
| ∀α :: κ.σ (polymorphic types)

ρ ::= b | α | τ → ρ (event field types)

γ ::= τ → {l : ρ, . . . , l : ρ} | {l : ρ, . . . , l : ρ} (event types)

κ ::= U (universal kind)
| {{l : τ, . . . , l : τ}} (record kinds)

The distinction of ρ and γ (which are actually both included in τ) is necessary to accurately
represent the type of event definitions and its purpose will become clear when we present the
typing rules.

We assume that the labels that appear in any type or kind are always pairwise distinct.

Note that event-records cannot be nested but records (in general) can. This is fundamental
in order to encode lists using records.

Note that the set of kinds KEVL is the same as KO. For this reason the set of kinding rules is
the same as the one in Definition 2.4.10 and the reader may assume that every concept related
with kinds introduced in Section 2.4 is also valid for this calculus.

The reader may also assume that any concept related to the typing environment, free
type-variables, essentially-free type-variables, substitution, generic instance, closure, and well-
formedness introduced in Section 2.4 is also valid for this calculus.

Definition 3.2.2. We say that M ∈ ΛEVL can be assigned the τ ∈ TEVL according to the kinding
assignment K and the typing assignment Γ, if the statement M : τ can be derived from K,Γ
using the typing rules in Figure 3.1.

Example 3.2.1. Let M ≡ {location = l,fire_danger = d}, τ1 ≡ {location : α1, fire_danger :
α2}, τ ′1 ≡ {location : String,fire_danger : String}, τ2 ≡ ∀α1 :: U .∀α2 :: U .α1 → α2 → {location :
α1,fire_danger : α2}, and τ ′2 ≡ String→ String→ {location : String, fire_danger : String}. We
can deduce letEv FireDanger = λl.λd.M in FireDanger "Porto" "low" : τ ′1 from the empty
kinding and typing environments as follows:

{α1 :: U , α2 :: U} 
O l : α1 ≥ l : α1 (Var)
{α1 :: U , α2 :: U}, {l : α1, d : α2} `EVL l : α1

{α1 :: U , α2 :: U} 
O d : α2 ≥ d : α2 (Var)
{α1 :: U , α2 :: U}, {l : α1, d : α2} `EVL d : α2 (Rec)

{α1 :: U , α2 :: U}, {l : α1, d : α2} `EVL M : τ1 (Abs)
{α1 :: U , α2 :: U}, {l : α1} `EVL λd.M : α2 → τ1∆1 = (Abs)
{α1 :: U , α2 :: U}, ∅ `EVL λl.λd.M : α1 → α2 → τ1
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Γ is well-formed under K (Const)
K,Γ `EVL cb : b

K 
O Γ(x) ≥ τ Γ is well-formed under K (Var)
K,Γ `EVL x : τ

K,Γ `EVL M : τ → τ ′ K,Γ `EVL N : τ (App)
K,Γ `EVL M N : τ ′

K,Γ{x : τ} `EVL M : τ ′ (Abs)
K,Γ `EVL λx.M : τ → τ ′

K,Γ `EVL M1 : Bool K,Γ `EVL M2 : τ K,Γ `EVL M3 : τ (Cond)
K,Γ `EVL if M1 then M2 else M3 : τ

K,Γ `EVL M : τ Cls(K,Γ, τ) = (K ′, σ) K ′,Γ{x : σ} `EVL N : τ ′ (Let)
K ′,Γ `EVL let x = M in N : τ ′

K,Γ `EVL M : γ Cls(K,Γ, γ) = (K ′, σ) K ′,Γ{x : σ} `EVL N : τ (LetEv)
K ′,Γ `EVL letEv x = M in N : τ

K,Γ `EVL Mi : τi, 1 ≤ i ≤ n (Rec)
K,Γ `EVL {l1 = M1, . . . , ln = Mn} : {l1 : τ1, . . . , ln : τn}

K,Γ `EVL M : τ K 
O τ :: {{l : τ ′}} (Sel)
K,Γ `EVL M.l : τ ′

K,Γ `EVL M : τ K,Γ `EVL N : τ ′ K 
O τ :: {{l : τ ′}} (Modif)
K,Γ `EVL modify(M, l,N) : τ

Figure 3.1: Typing rules for EVL.

∆2 = Cls({α1 :: U , α2 :: U},Γ, α1 → α2 → τ1) = (∅, τ2)

∅ 
O FireDanger : τ2 ≥ FireDanger : τ ′2 (Var)
∅, {FireDanger : τ2} `EVL FireDanger : τ ′2

(Const)
∅, {FireDanger : τ2} `EVL "Porto"String : String

∆3 = (App)
∅, {FireDanger : τ2} `EVL FireDanger "Porto"String : String→ τ ′1

∆3
(Const)

∅, {FireDanger : τ2} `EVL "low"String : String
∆4 = (App)

∅, {FireDanger : τ2} `EVL FireDanger "Porto"String : τ ′1

∆1 ∆2 ∆4 (LetEv)
∅, ∅ `EVL letEv FireDanger = λl.λd.M in FireDanger "Porto" "low" : τ ′1



3.3. Operational Semantics 41

3.3 Operational Semantics

As a model of an ML-style programming language, we require EVL to have a stronger property of
type soundness than the subject reduction property, i.e., that evaluation of a closed term of some
type always yields a value of that type. For this reason, we define a call-by-value operational
semantics using evaluation contexts based on the operational semantics in [46], which serves as
an evaluation model of a polymorphically-typed programming language with records.

Definition 3.3.1. Let v range over the set of values V given by the following grammar:

v ::= cb | λx.M | {l = v, . . . , l = v}

Definition 3.3.2. Let [•] represent the empty context (• is called a hole). Evaluation contexts
identify terms that are to be evaluated and the set of evaluation contexts (ranged over by E [ ]) is
given by the following grammar:

E [ ] ::= [•] | E [ ] M | v E [ ] | if E [ ] then M1 else M2

let x = E [ ] in M | letEv x = E [ ] in M
{l1 = v1, . . . , li−1 = vi−1, li = E [ ], . . . } | E [ ].l
modify(E [ ], l,M) | modify(v, l, E [ ])

Definition 3.3.3. Let E [M ] be the term obtained by placingM in the hole of the evaluation con-
text E [ ]. The set of call-by-value context-rewriting rules is given by the following transformation
rules:

E [(λx.M) v] →E E [M [v/x]]
E [if True then M1 else M2] →E E [M1]
E [if False then M1 else M2] →E E [M2]

E [let x = v in M ] →E E [M [v/x]]
E [letEv x = v in M ] →E E [M [v/x]]

E [{l1 = v1, . . . , ln = vn}.li] →E E [vi]
E [modify({l1 = v1, . . . , ln = vn}, li, v)] →E E [{l1 = v1, . . . , li = v, . . . , ln = vn}]

Definition 3.3.4. Let M,N ∈ ΛEVL.

• We say that M reduces to N in one E-evaluation step, denoted M →1
E N , if there exists an

evaluation context E [ ] and M1,M2 ∈ ΛEVL such that M ≡ E [M1], E [M1]→E E [M2], and
N ≡ E [M2].

• We define →E as the reflexive and transitive closure of →1
E .

• We write M ↓ N if M →E N and there is no N ′ ∈ ΛEVL such that N →E N ′.

To show the type soundness with respect to this operational semantics, we need to define a
type-indexed family of predicates on closed values.
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Definition 3.3.5. For a closed type σ ∈ TEVL, let Vσ = {v | ∅, ∅ `EVL v : σ} and pσ ⊆ Vσ be
defined inductively on σ as follows:

v ∈ pb ⇔ v = cb for some constant cb

v ∈ p∀α1::κ1···∀αn::κn.τ ⇔ for any ground substitution S such that dom(S) = {α1, . . . , αn}
and it respects {α1 :: κ1, . . . , αn :: κn}, v ∈ pS(τ)

v ∈ pτ→τ ′ ⇔ ∀v0 ∈ pτ , if (v v0) ↓M then M ∈ pτ ′

v ∈ p{l1:τ1,...,ln:τn} ⇔ v ≡ {l1 = v1, . . . , ln = vn} such that vi ∈ pτi , (1 ≤ i ≤ n)

Definition 3.3.6. Let Γ be a closed typing environment.

• A Γ-environment is a function, denoted by η, such that dom(η) = dom(Γ) and for any
x ∈ dom(Γ), η(x) ∈ vΓ(x).

• We write η(M) for the term obtained from M ∈ ΛEVL by substituting η(x) for each free
occurrence of x in M .

For a function f , if x 6∈ dom(f), we write f{x 7→ v} for the extension f ′ of f to x such that
f ′(x) = v.

Theorem 3.3.1. If K,Γ `EVL M : σ then for any ground substitution S that respects K, and
for any S(Γ)-environment η, if η(M) ↓ N , then N ∈ pS(σ).

Proof. Let S be any ground substitution respecting K, and let η be any S(Γ)-environment. This
can be proved by induction on the typing derivation.

• Case (Const): Trivial.

• Case (Var): Suppose K,Γ `EVL x : τ . Then K,Γ 
O Γ(x) ≥ τ . Let ∀α1 :: κ1 · · · ∀αn ::
κn.τ0 = Γ(x). Then there is some S0 such that dom(S0) = {α1, . . . , αn}, τ = S0(τ0), and
K `EVL S0(αi) :: S0(κi). By Lemma 2.4.1, ∅ 
O S(S0(αi)) :: S(S0(κi)). By the bound
type variable convention, S(S0(τ0)) = (S ◦ S0)(S(τ0)) and S(S0(κi)) = (S ◦ S0)(S(κi)),
since S0 only affects bound variables. This means that S ◦ S0 is a ground substitution
respecting {α1 :: S(κ1), . . . , αn :: S(κn)}. Now, suppose that η(x) ↓ M ′. Then by
the assumption M ′ ∈ p∀α1::S(κ1)···∀αn::S(κn).S(τ0). By the definition of p, we have that
M ′ ∈ p(S◦S0)(S(τ0)) = pS(S0(τ0)) = pS(τ).

• Case (App): Suppose K,Γ `EVL M1 M2 : τ2 is derived from K,Γ `EVL M1 : τ1 → τ2 and
K,Γ `EVL M2 : τ1. Now, also suppose that η(M1 M2) ↓M ′. By the definition of evaluation
contexts, η(M1) ↓M ′1 and (M ′1 η(M2)) ↓M , since (M1 M2) fits (E [ ] M) and (M ′1 M2) fits
(v E [ ]). By the induction hypothesis for M1, we have that M ′1 = v1 ∈ pS(τ1)→S(τ2) for some
value v1. But, by the definition of evaluation contexts, η(M2) ↓M ′2 and (v1 M

′
2) ↓M ′ and,
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by the induction hypothesis for M2, we have that M ′2 = v2 ∈ pS(τ1) for some value v2. By
the definition of p, we have M ′ ∈ pS(τ2).

• Case (Abs): Suppose K,Γ `EVL λx.M1 : τ1 → τ2 is derived from K,Γ∪{x : τ1} `EVL M1 : τ2.
Then, η(λx.M1) = λx.η(M1) ↓ λx.η(M1). This means that, if we want to see what happens
to the type of λx.M1 during evaluation, we have to apply it to a value of type S(τ1).
Let v be any element in pS(τ1) and suppose (λx.η(M1)) v ↓ M ′. By the definition of
evaluation contexts, [v/x](η(M1)) ↓ M ′, i. e., η{x 7→ v}(M1) ↓ M ′. Since η{x 7→ v} is a
S(Γ∪ {x : τ1})-environment, by the induction hypothesis, M ′ ∈ pS(τ2). By the definition of
p, this proves that λx.η(M1) ∈ pS(τ1)→S(τ2).

• Case (Let): Suppose K,Γx `EVL let x = M1 in M2 : τ is derived from K ′,Γx `EVL M1 : τ ′,
Cls(K ′,Γx, τ ′) = (K,σ), and K,Γx ∪ {x : σ} `EVL M2 : τ . Then, there are some α1, . . . , αn

and κ1, . . . , κn such that K = K ′∪{α1 :: κ1, . . . , αn :: κn} and σ = ∀α1 :: κ1 · · · ∀αn :: κn.τ ′.
By the bound type variable convention, we can assume that any {α1, . . . , αn} do not appear
in S. Then S(σ) = ∀α1 :: S(κ1) · · · ∀αn :: S(κn).S(τ ′). Let S′ be any ground substitution
such that dom(S′) = {α1, . . . , αn} and S′ respects {α1 :: S(κ1), . . . , αn :: S(κn)}. Then
S′ ◦ S is a ground substitution that respects K ′ ∪ {α1 :: κ1, . . . , αn :: κn} = K, and η is a
(S′ ◦ S)(Γx)-environment. Therefore, by the induction hypothesis for M1, if η(M1) ↓M ′1,
then M ′1 = v1 ∈ pS′(S(τ ′)) and, by the definition of p, v1 ∈ pS(σ). Now, suppose that
η(let x = M1 in M2) ↓ M ′. By the definition of evaluation contexts, η(M1) ↓ M ′1 and
(let x = M ′1 in η(M2)) ↓ M ′. This means that M ′1 = v1 ∈ pS(σ). By the definition of
evaluation contexts, [v1/x](η(M2)) ↓M ′, i. e., η{x 7→ v1}(M2) ↓M ′. Since η{x 7→ v1} is a
S(Γ ∪ {x : σ})-environment, then M ∈ pS(τ).

• Case (LetEv): Similar to the case for (Let).

• Case (Rec): Suppose K,Γ `EVL {l1 = M1, . . . , ln = Mn} : {l1 : τ1, . . . , ln : τn} is derived
from K,Γ `EVL Mi : τi, (1 ≤ i ≤ n). Now, also suppose that η({l1 = M1, . . . , ln = Mn}) ↓
M . By the definition of evaluation contexts, ({l1 = η(M1), . . . , ln = η(Mn)}) ↓ M ′. But,
by the induction hypothesis, η(Mi) ↓M ′i , M ′i = vi ∈ pS(τi), for some value vi. Thus, by the
definition of p, we have M ′ ∈ p{l1:S(τ1),...,ln:S(τn)}.

• Case (Sel): Suppose K,Γ `EVL M.l : τ is derived from K,Γ `EVL M : τ ′ and K `EVL τ ′ ::
{{l : τ}}. Now, also suppose that η(M.l) ↓ M ′. By the definition of evaluation contexts,
we have that η(M) ↓ M ′′ and M ′′.l ↓ M ′. By the induction hypothesis, we have that
M ′′ = v ∈ pS(τ) for some value v. Since S is a ground substitution that respects K, by
Lemma 2.4.1, we have that ∅ `EVL S(τ ′) :: {{l : S(τ)}}. This implies that S(τ ′) is a ground
record type of the form {. . . , l : S(τ), . . . }. Thus, by the definition of p, v = {. . . , l = v′, . . . },
v′ ∈ pS(τ). But {. . . , l = v′, . . . }.l ↓ v′.

• Case (Modif): Suppose K,Γ `EVL modify(M1, l,M2) : τ is derived from K,Γ `EVL M1 : τ ,
K,Γ `EVL M2 : τ ′, and K 
O τ :: {{l : τ ′}}. Now, also suppose η(modify(M1, l,M2)) ↓M ′.
By the definition of evaluation contexts, η(M1) ↓ M ′1 and modify(M ′1, l, η(M2)) ↓ M ′.
By the induction hypothesis for M1, M ′1 = v1 ∈ pS(τ), for some value v1. Since S is
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a ground substitution that respects K, by Lemma 2.4.1, ∅ 
O S(τ) :: {{l : S(τ ′)}}.
This implies that S(τ) is a ground record type of the form {. . . , l : S(τ ′), . . . }. By
the definition of p, v1 = {. . . , l = v, . . . }, v ∈ pS(τ ′). By the definition of evaluation
contexts, η(M2) ↓ M ′2 and modify(M ′1, l,M ′2) ↓ M ′. By the induction hypothesis for M2,
M ′2 = v2 ∈ pS(τ ′), for some value v2. But modify({. . . , l = v, . . . }, l, v2) ↓ {. . . , l : v2, . . . }
and {. . . , l = v2, . . . } ∈ p{...,l:S(τ ′),... } = pS(τ).

Example 3.3.1. Let K = {α1 :: U , α2 :: {{l1 : α1}}} and Γ = {x1 : α1, x2 : α2}. Then
K,Γ `EVL x2.l1 : α1 and S = [Bool/α1, {l1 : α1, l2 : α1}/α2] respects K.

Consider the following S(Γ)-environment:

η : {x1, x2} → Bool
x1 7→ TrueBool

x2 7→ {l1 = TrueBool, l2 = FalseBool}.

Then η(x2.l1) ≡ {l1 = TrueBool, l2 = FalseBool}.l1, {l1 = TrueBool, l2 = FalseBool}.l1 ↓
TrueBool and TrueBool ∈ pS(α1) = pBool.

3.4 Type Inference

The kinded type inference algorithm for EVL is a natural extension of the kinded type
inference algorithm introduced in Section 2.4 of the previous chapter. The kinded unification
algorithm for EVL is exactly the same as the one defined in that section. The reason is that the
set of types for the EVL language is also the same as the one defined in that section.

Definition 3.4.1. Let Γ be a type assignment, K be a kinding environment, M ∈ ΛEVL and
τ ∈ TEVL. The EVL type inference function WE(K,Γ,M) that returns the triple (K ′, S, τ)
such that K ′, S(Γ) `EVL M : τ is defined inductively in Figure 3.2.

Theorem 3.4.1. Given a kinding environment K, a type assignment Γ and M ∈ ΛEVL. If
WE(K,Γ,M) = (K ′, S, τ) then the following properties hold:

• (K ′, S) is a kinded substitution that respects K and K ′, S(Γ) `EVL M : τ .

• If K0, S0(Γ) `EVL M : τ0 for some kinded substitutions (K0, S0) and τ0 ∈ TEVL such
that (K0, S0) respects K, then there is some type substitution S′ such that the kinded
substitution (K0, S

′) respects K ′, τ0 ≡ S′(τ), and S0(Γ) = S′ ◦ S(Γ).

If WE(K,Γ,M) fails, then there is no kinded substitution (K0, S0) and τ0 such that (K0, S0)
respects K and K0, S0(Γ) `EVL M : τ0.
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WE(K,Γ, x) = if x 6∈ dom(Γ) then fail
else let ∀α1 :: κ1 · · · ∀αn :: κn.τ = Γ(x),

S = [β1/α1, . . . , βn/αn] (β1, . . . , βn are fresh)
in (K ∪ {β1 :: S(κ1), . . . , βn :: S(κn)}, id, S(τ))

WE(K,Γ,M1 M2) = let (K1, S1, τ1) = WE(K,Γ,M1)
(K2, S2, τ2) = WE(K1, S1(Γ),M2)
(K3, S3) = U(K2{α :: U},

{(S2(τ1), τ2 → α)}) (α is fresh)
in (K3, S3 ◦ S2 ◦ S1, S3(α))

WE(K,Γ, λx.M) = let (K1, S1, τ) = WE(K ∪ {α :: U},Γ ∪ {x : α},M) (α fresh)
in (K1, S1, S1(α)→ τ)

WE(K,Γ, let x = M1 in M2) = let (K1, S1, τ1) = WE(K,Γ,M1)
(K′1, σ) = Cls(K1, S1(Γ), τ1)
(K2, S2, τ2) = WE(K′1, S1(Γ) ∪ {x : σ},M2)

in (K2, S2 ◦ S1, τ2)

WE(K,Γ, letEv x = M1 in M2) = let (K1, S1, γ) = WE(K,Γ,M1)
(K′1, σ) = Cls(K1, S1(Γ), γ)
(K2, S2, τ2) = WE(K′1, S1(Γ) ∪ {x : σ},M2)

in (K2, S2 ◦ S1, τ2)

WE(K,Γ, {l1 = M1, . . . , ln = Mn}) = let (K1, S1, τ1) = WE(K,Γ,M1)
(Ki, Si, τi) = WE(Ki−1, Si−1 ◦ · · · ◦ S1(Γ),Mi) (2 ≤ i ≤ n)

in (Kn, Sn ◦ · · · ◦ S2 ◦ S1,

{l1 : Sn ◦ · · · ◦ S2(τ1), . . . , li : Sn ◦ · · · ◦ Si+1(τi), . . . , ln : τn})

WE(K,Γ,M.l) = let (K1, S1, τ1) = WE(K,Γ,M)
(K2, S2) = U(K1 ∪ {α1 :: U , α2 :: {{l : α1}}},

{(α2, τ1)}) (α1, α2 fresh)
in (K2, S2 ◦ S1, S2(α1))

WE(K,Γ,modify(M1, l,M2)) = let (K1, S1, τ1) = WE(K,Γ,M1)
(K2, S2, τ2) = WE(K1, S1(Γ),M2)
(K3, S3) = U(K2 ∪ {α1 :: U , α2 :: {{l : α1}}},

{(α1, τ2), (α2, S2(τ1))}) (α1, α2 are fresh)
in (K3, S3 ◦ S2 ◦ S1, S3(α2))

WE(K,Γ, if M1 then M2 else M3) = let (K1, S1, τ1) = WE(K,Γ,M1)
(K2, S2) = U(K1, {(τ1,Bool)})
(K3, S3, τ2) = WE(K2, S2 ◦ S1(Γ),M2)
(K4, S4, τ3) = WE(K3, S3 ◦ S2 ◦ S1(Γ),M3)
(K5, S5) = U(K4, {(S4(τ2), τ3)})

in (K5, S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1, S5 ◦ S4(τ2))

Figure 3.2: The type inference algorithm WE for EVL.
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Proof. We start by proving the soundness of the type inference algorithm by induction on the
structure of M . We only show the case for if M1 then M2 else M3 and letEv x = M1 in M2. The
case for cb is trivial and the remaining cases are similar to the corresponding proof in [46].

• M ≡ if M1 then M2 else M3. Suppose that WE(K,Γ, if M1 then M2 else M3) =
(K ′, S, τ). Then WE(K,Γ, if M1 then M2 else M3) = (K ′, S, τ), U(K1, {(τ1,Bool)}) =
(K2, S2), WE(K2, S2◦S1(Γ),M2) = (K3, S3, τ2), WE(K3, S3◦S2◦S1(Γ),M3) = (K4, S4, τ3),
U(K4, {(S4(τ2), τ3)}) = (K5, S5), K ′ = K5, S = S5 ◦S4 ◦S3 ◦S2 ◦S1 and τ = S5(τ3). First,
we show that (K5, S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1) respects K. By the correction of the unification
algorithm, we know that (K5, S5) respects K4 and (K2, S2) respects K1. We also know that
S5 ◦ S4(τ2) = S5(τ3) and S2(τ1) = S2(b), i.e., S2(τ1) = b. By the induction hypothesis, we
know that (K4, S4) respects K3, (K3, S3) respects K2 and (K1, S1) respects K. By applying
Lemma 2.4.1 as many times as needed, we have that (K5, S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1) respects K.
Now, we are left to show thatK5, S5◦S4◦S3◦S2◦S1(Γ) `EVL ifM1 thenM2 elseM3 : S5(τ3).
By the induction hypothesis, we know that K1, S1(Γ) `EVL M1 : τ1, K3, S3 ◦ S2 ◦
S1(Γ) `EVL M2 : τ2 and K4, S4 ◦ S3 ◦ S2 ◦ S1(Γ) `EVL M3 : τ3. By Lemma 2.4.3,
we have that K5, S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1(Γ) `EVL M1 : S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1(τ1), i.e.,
K5, S5 ◦S4 ◦S3 ◦S2 ◦S1(Γ) `EVL M1 : S5 ◦S4 ◦S3(b), K5, S5 ◦S4 ◦S3 ◦S2 ◦S1(Γ) `EVL M1 : b,
K5, S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1(Γ) `EVL M2 : S5 ◦ S4(τ2), i.e., K5, S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1(Γ) `EVL
M2 : S5(τ3), and K5, S5 ◦S4 ◦S3 ◦S2 ◦S1(Γ) `EVL M3 : S5(τ3). Finally, by (Cond), we have
that K5, S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1(Γ) `EVL if M1 then M2 else M3 : S5(τ3).

• M ≡ letEv x = M1 inM2. Suppose thatWK(K,Γ, letEv x = M1 inM2) = (K ′, S, τ). Then
WK(K,Γ,M1) = (K1, S1, γ), Cls(K1, S1(Γ), γ) = (K ′1, σ), WK(K ′1, S1(Γ) ∪ {x : σ},M2) =
(K2, S2, τ

′), K ′ = K2, S = S2 ◦S1, and τ = τ ′. First, we show that (K2, S2 ◦S1) respects K.
By the induction hypothesis, we know that (K2, S2) respects K ′1. If we show that (K ′1, S1)
respects K then, by Lemma 2.4.1, we know that (K2, S2 ◦ S1) respects K. Since we want
to show that (K ′1, S1) respects K, we need to show that ∀α ∈ dom(K),K ′1 
O S1(α) ::
S1(K(α)), i.e., FTV(S1(α)) ⊆ dom(K ′1). We know that ∀α ∈ dom(K),K1 
O S(α) ::
S1(K(α)), i.e., FTV(S1(α)) ⊆ dom(K1), and, since Cls(K1, S1(Γ), γ) = (K ′1, σ), that K1 =
K ′1 ∪ {α1 :: κ1, . . . , αn :: κn}. But then we know that FTV(S1(α)) ∈ dom(K ′1)∪ dom({α1 ::
κ1, . . . , αn :: κn}). Hence, we only need to show that no element of FTV(S1(α)) is in
dom({α1 :: κ1, . . . , αn :: κn}) = EFTV(K1, γ)\EFTV(K1, S1(Γ)). Let α′ ∈ FTV(S1(α)). If
α′ ∈ EFTV(K1, S1(Γ)), then α′ 6∈ dom({α1 :: κ1, . . . , αn :: κn}). If α′ 6∈ EFTV(K1, S1(Γ)),
then it is easy to see that α′ 6∈ EFTV(K1, γ). Therefore, we have that (K ′1, S1) respects
K and, by Lemma 2.4.1, that (K2, S2 ◦ S1) respects K. Now, we have only left to
show that K2, S2 ◦ S1(Γ) ` letEv x = M1 in M2 : τ ′. By the induction hypothesis, we
have that K1, S1(Γ) ` M1 : γ and that K2, S2 ◦ S1(Γ) ∪ {x : S2(σ)} ` M2 : τ ′. Since
Cls(K1, S1(Γ), γ) = (K ′1, σ), then, by (Gen), we have that K1, S1(Γ) ` M1 : σ, and, by
Lemma 2.4.3, that K2, S2 ◦ S1(Γ) ` M1 : S2(σ). Finally, by (LetEv), we have that
K2, S2 ◦ S1(Γ) ` letEv x = M1 in M2 : τ ′.

We now prove the completeness of the type inference algorithm by induction on the structure of
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M . Again, we only show the case for if M1 then M2 else M3 and letEv x = M1 in M2. The case
for cb is trivial and the remaining cases are similar to the corresponding proof in [46].

• M ≡ if M1 then M2 else M3. Suppose that WE(K,Γ, if M1 then M2 else M3) =
(K,S, τ). Then WE(K,Γ,M1) = (K1, S1, τ1), U(K1, {(τ1,Bool)}) = (K2, S2), WE(K2, S2 ◦
S1(Γ),M2) = (K3, S3, τ2), WE(K3, S3 ◦S2 ◦S1(Γ),M3) = (K4, S4, τ3), U(K4, {(S4(τ2), τ3)})
= (K5, S5), and K ′ = K5, S = S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1, τ0 = S5 ◦ S4(τ2). Now, suppose that
(K0, S0) respects K, and K0, S0(Γ) `EVL if M1 then M2 else M3 : τ0. Then K0, S0(Γ) `EVL
M1 : Bool, K0, S0(Γ) `EVL M2 : τ0, and K0, S0(Γ) `EVL M3 : τ0. By applying the induction
hypothesis toM2, we conclude that there exists some S3

0 such that (K0, S
3
0) respectsK3, and

τ0 = S3
0(Γ) and S0(Γ) = S3

0 ◦S3 ◦S2 ◦S1. Now, by applying the induction hypothesis to M3,
we conclude that there exists some S4

0 such that (K0, S
4
0) respects K4, and τ0 = S4

0(τ3) and
S0(Γ) = S4

0 ◦S4◦S3◦S2◦S1(Γ). It is easy to see that S4
0 is a unifier of S4(τ2) and τ3. By the

correctness and completeness of the unification algorithm, there is a S5
0 such that (K0, S

5
0)

respects K5 and S4
0 = S5

0 ◦ S5. Then we have τ0 = S4
0(τ3) = S5

0 ◦ S5 ◦ τ3 = S5
0 ◦ S5 ◦ S4 ◦ τ2,

S0(Γ) = S4
0 ◦ S4 ◦ S3 ◦ S2 ◦ S1(Γ) = S5

0 ◦ S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1(Γ).

• M ≡ letEv x = M1 in M2. Suppose that WK(K,Γ, letEv x = M1 in M2) = (K ′, S, τ).
Then WK(K,Γ,M1) = (K,S1, γ), Cls(K1, S1(Γ), γ) = (K ′1, σ1), WK(K ′1, S1(Γ) ∪ {x :
σ1},M2) = (K2, S2, τ

′), and K ′ = K2, S = S2 ◦ S1, τ = τ ′. Now, suppose that (K0, S0)
respects K, and K0, S0(Γ) ` letEv x = M1 in M2 : τ0. Then K ′0, S0(Γ) ` M1 : γ1

0 ,
Cls(K ′0, S0(Γ), γ1

0) = (K0, σ
1
0) and K0, S0(Γ) ∪ {x : σ1

0} ` M2 : τ0. By the definition of
Cls, we know we can write K ′0 = K0 ∪ {α0

1 :: κ0
1, . . . , α

0
m :: κ0

m} such that {α0
1, . . . , α

0
m} =

EFTV(K ′0, γ1
0) \ EFTV(K ′0, S0(Γ)) and σ1

0 = ∀α0
1 :: κ0

1 · · · ∀α0
m :: κ0

m.γ
1
0 . By the induction

hypothesis, there is some S1
0 such that (K ′0, S1

0) respects K1, σ1
0 = S1

0(γ) and S0(Γ) =
S1

0 ◦ S1(Γ). Again, by the definition of Cls, we know we can write K1 = K ′1 ∪ {α1 ::
κ1, . . . , αn :: κn} such that {α1, . . . , αn} = EFTV(K1, γ) \ EFTV(K1, S1(Γ)) and σ1 =
∀α1 :: κ1 · · · ∀αn :: κn.γ. Since we can always rename bound variables as needed, we
can assume that {α1, . . . , αn} ∩ {α0

1, . . . , α
0
m} = ∅. Since (K ′0, S1

0) respects K1, then
K0 ∪ {α0

1 :: κ0
1, . . . , α

0
m :: κ0

m} ` S1
0(αi) :: S1

0(κi), (1 ≤ i ≤ n). We can decompose S1
0

into two substitutions S2
0 and S3

0 such that S1
0 = S3

0 ◦ S2
0 as follows: S2

0 is the restriction
of S1

0 on dom(S1
0) \ {α1, . . . , αn}; S3

0 is [S1
0(α1)/α1, . . . , S

1
0(αn)/αn]. Now, we show that,

for each 1 ≤ n, S2
0(κi) is well formed under K0 ∪ {α1 :: S2

0(κ1), . . . , αi−1 :: S2
0(κi−1)}.

Since S1
0(κi) is well formed under K ′0, it is enough to show that FTV(S2

0(κi)) ∩ {α0
1 ::

κ0
1, . . . , α

0
m :: κ0

m = ∅. Suppose α ∈ FTV(S2
0(κi)). Then there is some α′ such that

α ∈ FTV(S2
0(α′)) and α′ ∈ FTV(κi). Since αi ∈ EFTV(K1, γ), then α′ ∈ EFTV(K1, γ). By

our assumption on K1, for any j ≥ i, αi 6∈ FTV(κi). Therefore, either α ∈ {α1, . . . , αi−1},
or α ∈ S2

0(EFTV(K1, S1(Γ)). But it can be shown by induction of the construction of
EFTV(K,S1(Γ)) that S2

0(EFTV(K1, S1(Γ)) ⊆ EFTV(K ′0, S0(Γ)). Thus α 6∈ {α0
1, . . . , α

0
m},

and K0 ∪ {α1 :: S2
0(κ1), . . . , αn :: S2

0(κn)} is well formed. Using a similar argument, it can
be shown that S2

0(γ) is well formed under K0 ∪ {α1 :: S2
0(κ1), . . . , αn :: S2

0(κn)}. Then
(K0 ∪ {α0

1 :: κ0
1, . . . , α

0
m :: κ0

m}, S3
0) respects K0 ∪ {α1 :: S2

0(κ1), . . . , αn :: S2
0(κn)}, and
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γ1
0 = S3

0(S2
0(γ)). Thus K0 ` ∀α1 :: S2

0(κ1) · · · ∀αn :: S2
0(κn).S2

0(γ) ≥ ∀α0
1 :: κ0

1 · · · ∀α0
m ::

κ0
m.γ

1
0 , i.e. K0 ` S2

0(σ1) ≥ σ1
0. By Lemma 2.4.4, K0, S0(Γ) ∪ {x : S2

0(σ1)} `M2 : τ0. Since
S0(Γ) = S2

0(S1(Γ)), then K0, S
2
0(S1(Γ) ∪ {x : σ1}) ` M2 : τ0. Since (K ′0, S1

0) respects K1,
then (K0, S

2
0) respects K ′1. Finally, by applying the induction hypothesis to M2, we can

conclude that there is some S4
0 such that (K0, S

4
0) respects K2 and that τ0 = S4

0(τ ′) and
S4

0(S2(S1(Γ))) = S2
0(S1)) = S1

0(S1(Γ)) = S0(Γ).

Example 3.4.1. Let M ≡ {location = l,fire_danger = d}, N ≡ FireDanger "Porto"String

"low"String, τ1 ≡ {location : α3,fire_danger : α4}, τ ′1 ≡ {location : String,fire_danger : String},
τ2 = ∀α3 :: U .∀α4 :: U .α3 → α4 → {location : α3, fire_danger : α4}.

1) WE(∅, ∅, letEv FireDanger = λl.λd.M in N) = (∅, [String/α6,String/α5,String/α3,

String/α4, α4/α2,String/α1], τ ′1)
1.1) WE(∅, ∅, λl.λd.M) = ({α3 :: U , α4 :: U},

[α4/α2, α3/α1],
α3 → α4 → τ1)

1.1.1) WE({α1 :: U}, {l : α1}, λd.M) = ({α3 :: U , α4 :: U},
[α4/α2, [α3/α1],
α4 → τ1)

1.1.1.1) WE({α1 :: U , α2 :: U}, {l : α1, d : α2},M) = ({α3 :: U , α4 :: U}, [α4/α2, α3/α1], τ1)
1.1.1.1.1) WE({α1 :: U , α2 :: U}, {l : α1, d : α2}, l) = ({α2 :: U , α3 :: U}, [α3/α1], α3)
1.1.1.1.2) WE({α2 :: U , α3 :: U}, {l : α3, d : α2}, d) = ({α3 :: U , α4 :: U}, [α4/α2], α4)

1.2) Cls({α3 :: U , α4 :: U}, ∅, α3 → α4 → τ1) = (∅, τ2)
1.3) WE(∅, {FireDanger : τ2}, N) = (∅, [String/α6,String/α5,

String/α3,String/α4], τ ′1)
1.3.1) WE(∅, {FireDanger : τ2},

FireDanger "Porto"String) = (∅, [String/α5,String/α3, α6/α4],
α6 → {location : String, fire_danger : α6})

1.3.1.1) WE(∅, {FireDanger : τ2},FireDanger) = (∅, [α5/α3, α6/α4],
α5 → α6 → {location : α5,fire_danger : α6})

1.3.1.3) U(∅, (α5,String)) = (∅, [String/α5])
1.3.3) U(∅, (α6,String)) = (∅, [String/α6])

The principal typing of letEv FireDanger = λl.λd.M in FireDanger "Porto"String "low"String

is {location : String,fire_danger : String}.

For now, EVL does not include more powerful operations on records, such as those for
extending a record with a new field or for removing an existing field from a record. These
operations allow us to compose events in a more straightforward manner, which is a very
important concept both in CEP and in the treatment of obligations. We will explain these kind
of operations on records in the next chapter.



Chapter 4

An ML-style Calculus with Extensi-
ble Records

While the type inference algorithm introduced by Ohori as an extension of let-polymorphic
system for ML [24] allows for a polymorphic treatment of record-based operations such as field
selection and modification, it lacks support for extensible records. This is often accepted in
practical implementations of languages with record types in exchange for efficiency or due to
the difficulties in guaranteeing the correctness of type-inference whenever these operations are
considered.

In this chapter we add extensible records (i.e., records that can have new fields added to
them, or preexisting fields removed from them) to Ohori’s original ML-style polymorphic record
calculus by refining the notion of a record kind and type.

4.1 Terms

Definition 4.1.1. Let x range over an infinite countable set of variables V and l range over an
infinite countable set of labels L. The set of λ-terms, denoted by Λχ, is given by the following
grammar:

M ::= cb (constants)
| x (variable)
| (MM) (function application)
| λx.M (functional abstraction)
| let x = M in M (let declaration)
| {l = M, . . . , l = M} (records)
| M.l (field selection)
| modify(M, l,M) (field update)
| M \\ l (field removal)
| extend(M, l,M) (field addition)

49
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where b is a base type from a set of base type B.

4.2 Types and Kinds

Definition 4.2.1. Let α range over an infinite countable set of type variables A, l range over
an infinite countable set of labels L and b range over a set of base types B. The set of types,
denoted by Tχ, and the set of kinds, denoted by Kχ, are given by the following grammar:

τ ::= b (base types)
| χ (extensible types)
| τ → τ (function types)

σ ::= τ (monomorphic types)
| ∀α :: κ.σ (polymorphic types)

χ ::= α (type variables)
| {l : τ, . . . , l : τ} (record types)
| χ+ {l : τ} (field-addition types)
| χ− {l : τ} (field-removal types)

κ ::= U (universal kind)
| {{l : τ, . . . , l : τ || l : τ, . . . , l : τ}} (record kinds)

where the universal kind represents the set of all types and a record kind of the form {{ll1 :
τ l1, . . . , l

l
n : τ ln || lr1 : τ r1 , . . . , lrm : τ rm}} represents the set of structures that have at least fields

ll1, . . . , l
l
n with types τ l1, . . . , τ ln, respectively, and do not have at least the fields lr1, . . . , lrm with

types τ r1 , . . . , τ rm, respectively.

We will call a type that is either a field-addition or field-removal type, a field-alteration
type.

Note that extensible types are defined recursively but are not recursive types. As “base
cases”, extensible types may have a type variable or a record type. We say that an extensible
type χ has τ as its root-type, denoted by root(χ), if χ was constructed starting with τ .

We assume that the labels that appear in any type or kind are always pairwise distinct and
that each label has exactly one type.

In this calculus, we will allow records to be empty and empty records are always assigned the
empty record type {}. An important distinction to make right away is the following. A type
variable that has the universal kind U can be instantiated with any type, but a type variable
that has the empty record kind {{||}} can only be instantiated with a record type.
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The set of free type-variables provided in Definition 2.4.3 has to be extended to cover
extensible records and the new type of kinds.

Definition 4.2.2. The set of free type-variables of a type σ ∈ Tχ, denoted by FTV(σ), is
defined inductively as follows:

FTV(α) = {α}
FTV(τ → τ ′) = FTV(τ) ∪ FTV(τ ′)

FTV({l1 : τ1, . . . , ln : τn}) = FTV(τ1) ∪ · · · ∪ FTV(τn)
FTV(∀α :: κ.σ) = FTV(κ) ∪ (FTV(σ) \ {α})

FTV(χ+ {l : τ}) = FTV(χ) ∪ FTV(τ)
FTV(χ− {l : τ}) = FTV(χ) ∪ FTV(τ)

The set of free type-variables of a kind κ ∈ K, denoted FTV(κ), is defined inductively as
follows:

FTV(U) = ∅
FTV({{ll1 : τ l1, . . . , lln : τ ln || lr1 : τ r1 , . . . , lrm : τ rm}}) = FTV(τ l1) ∪ · · · ∪ FTV(τ ln)

∪ FTV(τ r1 ) ∪ · · · ∪ FTV(τ rm)

We need to extend the subtype relation to extensible types.

Definition 4.2.3. We say that σ ∈ Tχ is a subtype of σ′ ∈ Tχ, denoted by σ vtype σ
′, if

σ ∈ Subtype(σ′), where Subtype(σ′), the collection of subtypes of σ′, is defined inductively as
follows:

Subtype(α) = {α}
Subtype(τ → τ ′) = Subtype(τ) ∪ Subtype(τ ′) ∪ {τ → τ ′}

Subtype(∀α.σ) = Subtype(σ) ∪ {∀α.σ}
Subtype({l1 : τ1, . . . , ln : τn}) = Subtype(τ1) ∪ . . . ∪ Subtype(τn) ∪ {{l1 : τ1, . . . , ln : τn}}

Subtype(χ+ {l : τ}) = Subtype(χ) ∪ Subtype(τ) ∪ {χ+ {l : τ}}
Subtype(χ− {l : τ}) = Subtype(χ) ∪ Subtype(τ) ∪ {χ− {l : τ}}

Kinding environments are defined the same way as in Section 2.4, just like any well-formedness
criteria applicable to both typing and kinding environments.

Definition 4.2.4. A type τ ∈ Tχ has a kind κ ∈ Kχ under a kinding assignment K, denoted by
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K 
χ τ :: κ, if it is derivable by the following set of kinding rules:

K 
χ τ :: U for any τ well-formed under K
K 
χ {ll1 : τ l1, . . . , lln : τ ln, . . .} :: {{ll1 : τ l1, . . . , lln : τ ln || lr1 : τ r1 , . . . , lrm : τ rm}}

if {ll1, . . . , lln, . . .} ∩ {lr1, . . . , lrm} = ∅,
and both {ll1 : τ l1, . . . , lln : τ ln, . . .} and τ ri (1 ≤ i ≤ m) are well-formed under K

K 
χ α :: {{ll1 : τ l1, . . . , lln : τ ln || lr1 : τ r1 , . . . , lrm : τ rm}}
if K(α) = {{ll1 : τ l1, . . . , lln : τ ln, . . . || lr1 : τ r1 , . . . , lrm : τ rm, . . .}}

K 
χ χ+ {l : τ} :: {{ll1 : τ l1, . . . , lln : τ ln, [l : τ ] || lr1 : τ r1 , . . . , lrm : τ rm}}
if K 
χ χ :: {{ll1 : τ l1, . . . , lln : τ ln || lr1 : τ r1 , . . . , lrm : τ rm, l : τ}}

K 
χ χ− {l : τ} :: {{ll1 : τ l1, . . . , lln : τ ln || lr1 : τ r1 , . . . , lrm : τ rm, [l : τ ]}}
if K 
χ χ :: {{ll1 : τ l1, . . . , lln : τ ln, l : τ || lr1 : τ r1 , . . . , lrm : τ rm}}

where [l : τ ] means that the inclusion of the field l : τ in its respective kind is optional.

Example 4.2.1. Let τ1, τ2 ∈ Tχ and l1, l2 ∈ L:

∅ 
χ {l1 : τ1} :: U
∅ 
χ {l1 : τ1} :: {{||}}
∅ 
χ {l1 : τ1} :: {{l1 : τ1 ||}}

∅ 
χ {l1 : τ1}+ {l2 : τ2} :: {{l2 : τ2 ||}}

∅ 
χ {l1 : τ1}+ {l2 : τ2} :: {{|| l3 : τ3}}

∅ 
χ {l1 : τ1}+ {l2 : τ2} − {l1 : τ1} :: {{l2 : τ2 || l1 : τ1}}

The following proposition ensures us that the kind restrictions that are produced by the
kinding rules are consistent.

Proposition 4.2.1. The kinding rules ensure the two following properties:

1. If K 
χ τ :: {{. . . , l : τ ′, . . . || . . .}}, then K 6
χ τ :: {{. . . || . . . , l : τ ′, . . .}};

2. If K 
χ τ :: {{. . . || . . . , l : τ ′, . . .}}, then K 6
χ τ :: {{. . . , l : τ ′, . . . || . . .}}.

Proof. Let us assume that K 
χ τ :: {{. . . , l : τ ′, . . . || . . .}}. According to the kinding rules, τ is
either a record type, a type variable, or an extensible type. Since extensible types have either
record types of type variables as root-types, we will first prove that these properties hold for
record types and type variables and then prove that these properties hold for extensible types as
well. The proof follows by induction on the structure of τ :

Property 1. First let us show that this property holds when τ is either a record type or a type
variable:
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• If τ ≡ {. . . , l : τ ′, . . .}, then K 6
χ {. . . , l : τ ′, . . .} :: {{. . . || . . . , l : τ ′, . . .}}, since
{. . . , l, . . .} ∩ {. . . , l, . . .} 6= ∅;

• If τ ≡ α, then K(α) = {{. . . , l : τ ′, . . . || . . .}} and K 6`χ α :: {{. . . || . . . , l : τ ′, . . .}},
since K(α) cannot be of the form {{. . . || . . . , l : τ ′, . . .}}, because l can only appear
once in K(α);

Now let us show that this property also holds when τ is an extensible type, assuming that
it holds for χ:

• If τ ≡ χ+{l : τ ′}, then K 
χ χ :: {{. . . || . . . , l : τ ′, . . .}} and K 6
χ χ+{l : τ ′} :: {{. . . |
| . . . , l : τ ′, . . .}}, since, by the induction hypothesis, K 6
χ χ : {{. . . , l : τ ′, . . . || . . .}};

• If τ ≡ χ+ {l′ : τ ′′}, such that l 6= l′, then K 
χ χ :: {{. . . , l : τ ′, . . . || . . . , l′ : τ ′′, . . .}}
and K 6
χ χ + {l′ : τ ′′} : {{. . . || . . . , l : τ ′, . . .}}, since, by the induction hypothesis,
K 6
χ χ : {{. . . || . . . , l : τ ′, l′ : τ ′′, . . .}};

• If τ ≡ χ− {l′ : τ ′′}, such that l 6= l′, then K 
χ χ :: {{. . . , l : τ ′, . . . , l′ : τ ′′, . . . || . . .}}
and K 6
χ χ − {l′ : τ ′′} : {{. . . || . . . , l : τ ′, . . .}}, since, by the induction hypothesis,
K 6
χ χ : {{. . . , l′ : τ ′′, . . . || . . . , l : τ ′, . . .}}.

Property 2. The proof is very similar to the one for Property 1.

We now restate and prove the following lemmas for this calculus.

Lemma 4.2.1. If K 
χ τ :: κ and (K1, S) respects K, then K1 
χ S(τ) :: S(κ).

Proof. The proof follows by induction on the structure of τ :

• Let τ be well-formed under K and κ ≡ U . Then, by Definition 2.4.9, this means that
FTV(τ) ⊆ dom(K). Since (K1, S) respects K, we know that for all α ∈ FTV(τ),
K1 
χ S(α) :: S(K(α)), i.e., that for all α ∈ FTV(τ), S(α) is well-formed under K1.
By Definition 2.4.9, this means that S(τ) is also well-formed under K1. Finally, by
Definition 4.2.4, we can now conclude that K1 
χ S(τ) :: U . Note that S(U) = U .

• Let τ ≡ {ll1 : τ l1, . . . , lln : τ ln, . . .} and κ ≡ {{ll1 : τ l1, . . . , lln : τ ln || lr1 : τ r1 , . . . , lrm : τ rm}}. By the
induction hypothesis, we know that for all τ ′ ∈ {τ l1, . . . , τ ln, . . .}, such that K 
χ τ ′ :: κ,
K1 
χ S(τ ′) :: S(κ), i.e., that for all τ ′ ∈ {τ l1, . . . , τ ln, . . .}, S(τ ′) is well-formed under
K1. This means that S({ll1 : τ l1, . . . , lln : τ ln, . . .}) is also well-formed under K1. Since
we know that τ ri , (1 ≤ i ≤ m) are well-formed under K, we know, by Definition 2.4.9,
that FTV(τ ri ) ⊆ dom(K). Since (K1, S) respects K, we know that for all α ∈ FTV(τ ri ),
K1 
χ S(α) :: S(K(α)), i.e., that for all α ∈ FTV(τ ri ), S(α) is well-formed under K1.
Finally, by Definition 4.2.4, we can now conclude that K1 
χ S({τ l1, . . . , τ ln, . . .}) :: S({{ll1 :
τ l1, . . . , l

l
n : τ ln || lr1 : τ r1 , . . . , lrm : τ rm}}). Note that labels are not affected by substitutions.
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• Let τ ≡ α and κ ≡ {{ll1 : τ l1, . . . , lln : τ ln || lr1 : τ r1 , . . . , lrm : τ rm}}. We know, by Definition 4.2.4,
that K(α) = {{ll1 : τ l1, . . . , lln : τ ln, . . . || lr1 : τ r1 , . . . , lrm : τ rm, . . .}}. Since (K1, S) respects
K (and α ∈ dom(K)), we can conclude, by Definition 2.4.13, that K1 
χ S(α) :: S({{ll1 :
τ l1, . . . , l

l
n : τ ln, . . . || lr1 : τ r1 , . . . , lrm : τ rm, . . .}}).

• Let τ ≡ χ + {l : τ ′} and κ ≡ {{ll1 : τ l1, . . . , lln : τ ln, [l : τ ′] || lr1 : τ r1 , . . . , lrm : τ rm}}. By the
induction hypothesis, we know that K1 
χ S(χ) :: S({{ll1 : τ l1, . . . , lln : τ ln || lr1 : τ r1 , . . . , lrm :
τ rm, l : τ ′}}). Therefore K1 
χ S(χ + {l : τ ′}) :: S({{ll1 : τ l1, . . . , lln : τ ln, [l : τ ′] || lr1 :
τ r1 , . . . , l

r
m : τ rm}});

• Let τ ≡ χ− {l : τ ′} and κ ≡ {{ll1 : τ l1, . . . , lln : τ ln || lr1 : τ r1 , . . . , lrm : τ rm, [l : τ ′]}}. The proof
for this case is very similar to the one for the previous case.

Example 4.2.2. Let χ, τ, τ ′ ∈ Tχ and l1, l2 ∈ L. The two following types are equal because
both represent the set of terms that add a field labelled with l1 to χ and remove a field labelled
with l2 from χ:

χ+ {l1 : τ} − {l2 : τ ′} ≡ χ− {l2 : τ ′}+ {l1 : τ}.

And the two following types are also equal because they represent the set of terms that add, and
then remove, a field labelled with l1 to and from χ and also remove a field labelled with l2 from
χ:

χ+ {l1 : τ} − {l2 : τ ′} − {l1 : τ} ≡ χ+ {l1 : τ} − {l1 : τ} − {l2 : τ ′}

Now, let χ1, χ2, τ, τ
′ ∈ Tχ such that root(χ1) 6≡ root(χ2), and l1, l2 ∈ L. The two following

types are not equal because they have different root types:

χ1 + {l1 : τ} − {l2 : τ ′} 6≡ χ2 + {l1 : τ} − {l2 : τ ′}

And the two following types are not equal because the one on the left represents the set of terms
that first remove a field labelled with l1 while the one on the right represents the set of terms
that first add a field labelled with l1 from χ1:

χ1 − {l1 : τ}+ {l2 : τ ′}+ {l1 : τ} 6≡ χ1 + {l1 : τ} − {l1 : τ}+ {l2 : τ ′}

The reason why we do not consider these last two types equal lays in the fact that χ1 must either
represent the set of terms that contain a field labelled with l1, or not. One of them must not
be well-formed, since the one on the left tells us that a record typed with χ1 must have a field
labelled with l1, but the type on the right tells us the opposite, i.e., that a record typed with χ1

must not have a field labelled with l1.

Note that the fact that we cannot change the order of fields-alteration types that have the
same label is naturally enforced by the kinding rules.
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Definition 4.2.5. We say that two extensible types χ, χ′ ∈ Tχ are equivalent up to the ordering
of their sequences of field-addition or removal types, denoted ≡ord, if the two following conditions
are met:

• Their root types are equal.

• Their sequences of field-alteration types only differ on the order of field-alteration types
with different labels. In this case, we say that χ and χ′ have equivalent sequences of
field-alteration types.

This definition can be trivially extended to any two types σ, σ′ ∈ Tχ, in which case we will
also write σ ≡ord σ

′.

The definitions provided in Section 2.4 related with type-substitutions, essentially-free type
variables, generic instance and closure are also valid for this calculus.

4.2.1 χ-reduction

Definition 4.2.5 allows us to identify extensible types with the same root type built from equivalent
sequences of field-alteration types, i.e., to identify extensible types that represent sets of records
that are built the same way. To identify sets of records that have the same set of fields, we
will also need to identify extensible types with the same root type and different sequences of
field-alteration types that still end up representing sets of records that have the same set of fields.

Example 4.2.3. Let χ, τ, τ ′ ∈ Tχ, l1, l2, l3 ∈ L and K be a kinding environment such that
K 
χ χ :: {{l1 : τ || l2 : τ ′}}. The two following types are equal because they both represent
the set of records that have (at least) a field labelled with l1 and do not have (at least) a field
labelled with l2:

χ− {l1 : τ}+ {l1 : τ} ≡ χ+ {l2 : τ ′} − {l2 : τ ′}.

We now introduce a reduction system for extensible types that, along with the restriction
imposed by the kinding rules, will allow us to identify extensible types that represent sets of
records that have the same set of fields.

Definition 4.2.6. Let χ, χ′ ∈ Tχ.

• We say that χ1 reduces to χ in one χ-reduction step, denoted by χ→1
χ χ
′, if χ′ can be
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obtained from χ using one of the following reduction rules:

{l1 : τ1, . . . , li : τi, . . . , ln : τn} − {li : τi} ± {l′ : τ ′} · · · →1
χ {l1 : τ1, . . . , ln : τn} ± {l′ : τ ′} · · ·

{l1 : τ1, . . . , ln : τn}+ {l : τ} ± {l′ : τ ′} · · · →1
χ {l1 : τ1, . . . , ln : τn, l : τ} ± {l′ : τ ′} · · ·

α±1 {l1 : τ1} · · · −i {l : τ} · · ·+j {l : τ} · · ·
→1
χ α±1 · · · ±i−1 {li−1 : τi−1} ±i+1 {li+1 : τi+1} · · · ±j−1 {lj−1 : τj−1} ±j+1 {lj+1 : τj+1} · · ·

α±1 {l1 : τ1} · · ·+i {l : τ} · · · −j {l : τ} · · ·
→1
χ α±1 · · · ±i−1 {li−1 : τi−1} ±i+1 {li+1 : τi+1} · · · ±j−1 {lj−1 : τj−1} ±j+1 {lj+1 : τj+1} · · ·

• We define →χ as the reflexive and transitive closure of →1
χ.

To ensure that →χ is confluent, i.e., that if χ1 ←χ χ →χ χ2 then there is a χ′ such that
χ1 →χ χ

′ ←χ χ2, we are going to assume that i and j always correspond to the positions of the
first two occurrences of those opposite and same-labelled fields in χ1.

Proposition 4.2.2. →χ is convergent, i.e., it is both confluent and terminating.

Proof. It is obvious that →χ is terminating since the number of field-alteration types is reduced
after each reduction step. Also, note that →χ is confluent by construction.

Proposition 4.2.3. Every rewrite rule →χ, transforms a type χ ∈ Tχ into a χ′ ∈ Tχ, such that
K `χ χ :: κ if, and only if, K `χ χ′ :: κ.

Proof. Let root(χ) be a record type:

• If χ ≡ {l1 : τ1, . . . , li : τi, . . . , ln : τn} − {li : τi} ± {l : τ} · · · and χ′ ≡ {l1 : τ1, . . . , ln :
τn} ± {l : τ} · · · . The only field that is affected by the transformation is li : τi. This means
we only have to show that K 
χ χ :: {{li : τi ||}}, if, and only if, K 
χ χ′ :: {{li : τi ||}},
and that, K 
χ χ :: {{|| li : τi}}, if, and only if, K 
χ χ′ :: {{|| li : τi}}. The proofs for each
direction of the implication are symmetric, so we are only going to provide the proof for
one of the directions. Let us start by assuming that K 
χ χ :: {{li : τi ||}}. According to
Definition 4.2.4, the last occurrence of the field li : τi in χ must be a field-alteration type.
But, since the transformation does not remove any field-alteration type from χ, the last
occurrence of li : τi in χ′ must also be a field-alteration type, and K 
χ χ′ :: {{li : τi ||}}.
Now, let us assume thatK `χ χ :: {{|| li : τi}}. According to Definition 4.2.4, this means that
the last occurrence of the field li : τi in χ must be a field-removal type. If the field-removal
type removed by the transformation is not the last one, then the last occurrence of the field
li : τi in χ′ is also a field-alteration type, and K `χ χ′ :: {{|| li : τi}}. If, on the other hand,
the field-removal type removed by the transformation is the last one, then it is easy to see
that it contains the only occurrence of that label in χ. After the transformation, that field
will no longer appear in χ′. By Definition 4.2.4, this means that K 
χ χ′ :: {{|| li : τi}}.
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• The proof for {l1 : τ1, . . . , ln : τn}+ {l : τ} ± {l′ : τ ′} · · · is very similar to the previous one.

Now, let root(χ) be a type variable, l : τ be the first field appearing more than once containing
label l in χ, and i, j (1 ≤ i ≤ j) correspond to the positions of the two first occurrences of l : τ
in χ:

• If χ ≡ α±1· · ·−i{l : τ}±i+1· · ·+j{l : τ}±j+1· · · and χ′ is of the form α±1· · ·±i+1· · ·±j+1· · · .
The only field that is affected by the transformation is l : τ . This means that we only
have to show that K 
χ χ :: {{l : τ ||}}, if, and only if, K 
χ χ′ :: {{l : τ ||}}, and that
K 
χ χ :: {{|| l : τ}}, if, and only if, K `χ χ′ :: {{|| l : τ}}. The proofs for each direction of
the implication are symmetric, so we are only going to provide the proof for the former
direction. Let us start by assuming that K 
χ χ :: {{l : τ ||}}. According to Definition 4.2.4,
the last occurrence of the field l : τ in χ must be a field-addition type. If the field-addition
type removed by the transformation is not the last one, then the last occurrence of l : τ
in χ′ is also a field-addition type, and K 
χ χ′ :: {{l : τ ||}}. If, on the other hand, the
field-addition type removed by the transformation is the last one, then it is easy to see
that i and j correspond to the positions of the only two occurrences of that field in χ.
After the transformation, that field will no longer appear in χ′. If we want to show that
K 
χ α′ :: {{l : τ ||}}, then we will have to show that {l : τ} is guaranteed to appear in
K(α). But, by Definition 4.2.4, we know that the field-removal type in position i can only
appear in χ if that is the case. Now, let us assume that K 
χ χ :: {{|| l : τ}}. According
to Definition 4.2.4, the last occurrence of the field l : τ in χ must be a field-removal type.
This means that we only have to consider the case where the field-removal type removed by
the transformation is not the last occurrence of field l : τ in χ. Since no other field-removal
type is remove by the transformation, this means that the the last occurrence of l : τ in χ′

is also a field-removal type and K 
χ χ′ :: {{l : τ ||}}.

• The proof for α±1 {l1 : τ1} · · ·+i {l : τ} · · · −j {l : τ} · · · is very similar to the previous one.

Definition 4.2.7. Let σ ∈ Tχ.

• σ is a χ-normal form (or is in χ-normal form) if for every extensible type χ vtype σ, there
is no χ′ ∈ Tχ such that χ→χ χ

′.

• We say that σ has a χ-normal form if there exists a σ′ ∈ χ such that σ ≡ord σ
′ and σ′ is in

χ-normal form.

• We will write |σ | for the χ-normal form of σ.

Proposition 4.2.4. If χ is in normal form, then each label that appears in it occurs exactly
once.
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Proof. Assume root(χ) is a record type. If no more rules can be applied, then χ does not have
any field-alteration types. This means that χ is a record type and, therefore, that every label
that appears in χ occurs exactly once. Now, assume root(χ) is a type variable. If no more rules
can be applied, then this means that there are no fields with matching labels appearing in χ.
That is, every label that appears in χ occurs exactly once.

This means that if a type σ ∈ Tχ is in χ-normal form, then every extensible type χ vtype σ

has a type variable as its root-type and every field-addition or removal in χ has a unique label.

Definition 4.2.8. We say that two types σ, σ′ ∈ Tχ are χ-equivalent (i.e. represent the same
sets of records with the same set of fields), denoted σ ≡χ σ′ if |σ |≡ord|σ′ |.

Proposition 4.2.5. Let S be a substitution and τ be a type. Then |S(|τ |) |=|S(τ) |.

Proof. Let τ be in χ-normal form, i.e., |τ |≡χ τ . Then there exists an extensible type χ in τ that
can be χ-normalized to its normal form |χ |. Let α ∈ dom(S) appear in χ, but not in |χ |. Then
α only appears in field-alteration types of χ that were removed by χ-normalization. Clearly, S(α)
will appear in S(χ), but not in S(|χ |). But then, since α only appeared in field-alteration types
of χ that were removed by χ-normalization, S(α) will only appear in those same filed-alterations
types. Therefore, S(α) will not appear in |S(χ) |. Thus S(α) will neither appear in |S(|χ |) |
nor in | S(χ) |. Let α ∈ dom(S) appear in χ and in | χ |. Then α must not appear in any
field-alterations types χ that can be removed by χ-normalization. Then S(α) will appear both
in S(χ) and S(|χ |):

• If S(| χ |) is in χ-normal form, then S(α) is in χ-normal form and will appear in both
|S(χ) | and |S(|χ |) |;

• If S(|χ |) is not in χ-normal form, then either S(α) is not in χ-normal form, S(α) is in
χ-normal form, but field-alteration types that can be cancelled out by preexisting “opposite”
field-alteration types in |χ | were added to |χ |, or both. In any case, these field-alteration
types will not appear in |S(|χ |) | or |S(χ) |.

This means we can conclude that field-alteration types that appear in |S(|χ |) | and |S(χ) | are
precisely the same, i.e. |S(|χ |) |=|S(χ) |.

In this type-system we will consider extensionally equivalent type-substitutions modulo
χ-equivalence.

Definition 4.2.9. We say that two type-substitutions S1 and S2 are extensionally equivalent,
denoted by S1 = S2, if and only if S1(τ) ≡χ S2(τ) for all τ ∈ Tχ.

Proposition 4.2.6. Let S1, S2, S′1, and S′2 be substitutions, such that S1 = S2 and S′1 = S′2.
Then S1 ◦ S′1 = S2 ◦ S′2.
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Γ is well-formed under K (Const)
K,Γ `χ cb : b

K 
χ Γ(x) ≥ τ Γ is well-formed under K
(Var)

K,Γ `χ x : τ

K,Γ{x : τ} `χ M : τ ′
(Abs)

K,Γ `χ λx.M : τ → τ ′

K,Γ `χ M : τ → τ ′ K,Γ `χ N : τ
(App)

K,Γ `χ M N : τ ′

K,Γ `χ M : σ K,Γ{x : σ} 
χ N : τ
(Let)

K,Γ `χ let x = M in N : τ

K,Γ `χ Mi : τi (1 ≤ i ≤ n)
(Rec)

K,Γ `χ {l1 = M1, . . . , ln = Mn} : {l1 : τ1, . . . , ln : τn}

K,Γ `χ M : τ K 
χ τ :: {{l : τ ′ ||}}
(Sel)

K,Γ `χ M.l : τ ′

K,Γ `χ M : τ K,Γ `χ N : τ ′ K 
χ τ :: {{l : τ ′ ||}}
(Modif)

K,Γ `χ modify(M, l,N) : τ

K,Γ `χ M : τ Cls(K,Γ, τ) = (K ′, σ)
(Gen)

K ′,Γ `χ M : σ

K,Γ `χ M : τ K 
χ τ :: {{l : τ ′ ||}}
(Contr)

K,Γ `χ M \\ l : τ − {l : τ ′}

K,Γ `χ M : τ K,Γ `χ N : τ ′ K 
χ τ :: {{|| l : τ ′}} root(τ) 6∈ FTV(τ ′)
(Ext)

K,Γ `χ extend(M, l,N) : τ + {l : τ ′}

Figure 4.1: Typing rules for the ML-style Calculus with Extensible Records.

Proof. Since S1 = S2 and S′1 = S′2, we know that S1(τ) ≡χ S2(τ) and S′1(τ) ≡χ S′2(τ) for any
τ ∈ Tχ. But |S′1(τ) |≡χ|S′2(τ) | and |S′1(τ) |, |S′2(τ) |∈ Tχ. Therefore, S1(|S′1(τ) |) ≡χ S2(|S′2(τ) |)
and, by Proposition 4.2.5, S1(S′1(τ)) ≡χ S2(S′2(τ)). Thus, S1 ◦ S′1 = S2 ◦ S′2.

Definition 4.2.10. We say that M ∈ Λχ can be assigned the type τ ∈ Tχ according to the type
assignment Γ, if the statement M : τ can be derived from Γ using the typing rules in Figure 4.1.

Example 4.2.4. Let K = {α1 :: {{|| l : α2}}, α2 :: U} and Γ = {x : α1, y : α2}. We can deduce
extend(x, l, y).l : α2 from Γ,K as follows:
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K 
χ α1 ≥ α1∆1 = (Var)
K,Γ `χ x : α1

K 
χ α2 ≥ α2∆2 = (Var)
K,Γ `χ y : α2

∆1 ∆2 K 
χ α1 :: {{|| l : α2}} α1 6∈ FTV(α2)
∆3 = (Ext)

K,Γ `χ extend(x, l, y) : α1 + {l : α2}

∆3 K 
χ α1 + {l : α2} :: {{l : α2 ||}} (Sel)
K,Γ `χ extend(x, l, y).l : α2

Lemma 4.2.2. If K1,Γ `χ M : σ and (K2, S) respects K1, then K2, S(Γ) `χ M : S(σ).

Proof. The proof follows by induction on the typing derivation of M :

• Case (Var): M ≡ x and we know that K1,Γ `χ x : σ and (K2, S) respects K1. Then σ = τ

for some τ Γ is well-formed under K1 and K1 
χ Γ(x) ≥ τ . Since Γ is well-formed under
K1 and (K2, S) respects K1, S(Γ) is well-formed under K2 and K2 
χ (S(Γ))(x) ≥ S(τ).
By the rule (Var), K2, S(Γ) `χ x : S(τ).

• Case (Abs): M ≡ λx.N and we know that K1,Γ `χ λx.N : σ and (K2, S) respects K1.
Then σ ≡ τ1 → τ2 for some τ1 and τ2 such that K1,Γ{α : τ1} `χ N : τ2. By the induction
hypothesis, K2, S(Γ){α : S(τ1)}) `χ N : S(τ2). By the rule (Abs), K2, S(Γ) `χ λx.N :
S(τ1)→ S(τ2). Note that S(τ1)→ S(τ2) ≡ S(τ1 → τ2).

• Case (App): M ≡M1 M2 and we know that K1,Γ `χ M1 M2 : σ and (K2, S) respects K1.
Then σ ≡ τ2, for some τ2 such that K1,Γ `χ M1 : τ1 → τ2 and K1,Γ `χ M2 : τ1, for some
τ1. By the induction hypothesis, K2, S(Γ) `χ M1 : S(τ1 → τ2) and K2, S(Γ) `χ M2 : S(τ1).
By the rule (App), K2, S(Γ) `χ M1 M2 : S(τ2).

• Case (Let): M ≡ let x = M1 in M2 and we know that K1,Γ `χ let x = M1 in M2 : σ
and (K2, S) respects K1. Then σ ≡ τ for some τ such that K1,Γ `χ M1 : σ′ for some σ′

and K1,Γ{x : σ′} `χ M2 : τ . By the induction hypothesis, K2, S(Γ) `χ M1 : S(σ′) and
K2, (S(Γ)){x : S(σ′)}. By the (Let) rule, K2, S(Γ) `χ let x = M1 in M2 : S(τ).

• Case (Rec): M ≡ {l1 = M1, . . . , ln = Mn} and we know that K1,Γ `χ {l1 = M1, . . . , ln =
Mn} : σ. Then σ = {l1 : τ1, . . . , ln : τn} for some τi (1 ≤ i ≤ n) such that K1,Γ `χ Mi : τi.
By the induction hypothesis, K2, S(Γ) `χ Mi : S(τi). By the (Rec) rule, K2, S(Γ) `χ {l1 =
M1, . . . , ln = Mn} : S({l1 : τ1, . . . , ln = τn}). Note that {l1 : S(τ1), . . . , ln = S(τn)} =
S({l1 : τ1, . . . , ln = τn}).

• Case (Sel): M ≡ N.l and we know that K1,Γ `χ N.l : σ and (K2, S) respects K1. Then
σ ≡ τ2 for some τ2 such that K1,Γ `χ N : τ1 for some τ1 and K1 
χ τ1 :: {{l : τ2 ||}}. By the
induction hypothesis, K2, S(Γ) `χ N : S(τ1). By Lemma 4.2.1, K2 
χ S(τ) :: {{l : S(τ2) ||}}.
By the rule (Sel), K2, S(Γ) `χ N.l : S(τ2).
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• Case (Modif): M ≡ modify(M1, l,M2) and we know that K1,Γ `χ modify(M1, l,M2) : σ
and (K2, S) respects K1. Then σ ≡ τ1 for some τ1 such that K1,Γ `χ M1 : τ1, K1,Γ `χ
M2 : τ2 for some τ2 and K1 `χ τ1 :: {{l : τ2 ||}}. By the induction hypothesis, K2, S(Γ) `χ
M1 : S(τ1) and K2, S(Γ) `χ M2 : S(τ2). By Lemma 4.2.1, K2 `χ S(τ1) :: {{l : S(τ2) ||}}. By
rule (Modif), K2, S(Γ) `χ modify(M1, l,M2) : S(τ1).

• Case (Gen): We know that K1,Γ `χ M : σ and (K2, S) respects K1. Then K ′1,Γ `χ M : τ
for some τ such that Cls(K ′1,Γ, τ) = (K1, σ). Since Γ is well-formed under K1 and (K2, S)
respects K1, S(Γ) is well-formed under K2. Since Cls(K ′1,Γ, τ) = (K1, σ), K1 = K ′1{α1 ::
κ1, . . . , αn :: κn} and σ ≡ ∀α1 :: κ1 · · · ∀αn :: κn.τ . By the bound variable convention,
{α1, . . . , αn} 6∈ dom(S), therefore (K2, S) respects K ′1, S(σ) ≡ ∀α1 :: S(κ1) · · · ∀αn ::
S(κn).S(τ), and Cls(K ′2, S(Γ), S(τ)) = (K2, S(σ)) such that K ′2 = K2{α :: S(κ1), . . . , αn ::
S(κn)}. By the induction hypothesis on K ′1,Γ `χ M : τ , K ′1, S(Γ) `χ M : S(τ). By the
rule (Gen), K2, S(Γ) `χ M : S(σ).

• Case (Contr): M ≡ N \\ l and we know that K1,Γ `χ N \\ l : σ and (K2, S) respects
K1. Then σ ≡ τ1 − {l : τ2} for some τ1 and τ2 such that K1,Γ `χ N : τ1 and K1 
χ
τ1 :: {{l : τ2 ||}}. By the induction hypothesis, K2, S(Γ) `χ N : S(τ1). By Lemma 4.2.1,
K2 
χ S(τ1) :: {{l : S(τ2) ||}}. By the rule (Contr), K2, S(Γ) `χ N \\ l : S(τ1 − {l : τ2}).

• Case (Ext): M ≡ extend(M1, l,M2) and we know that K1,Γ `χ extend(M1, l,M2) : σ and
(K2, S) respects K1. Then σ ≡ τ1 + {l : τ2}, for some τ1 and τ2 such that K1,Γ `χ M1 : τ1,
K1,Γ `χ M2 : τ2, and K1 
χ τ1 :: {{|| l : τ2}}. By the induction hypothesis, K2, S(Γ) `χ
M1 : S(τ1) and K2, S(Γ) `χ M2 : S(τ2). By Lemma 4.2.1, K2 
χ S(τ1) :: {{|| l : S(τ2)}}.
By the rule (Ext), K2, S(Γ) `χ extend(M1, l,M2) : S(τ1 + {l : τ2}).

We recall the corollary for the above lemma (see Corollary 2.4.1.1).

Corollary 4.2.2.1. If (K1, S1) respects K and (K2, S2) respects K1, then (K2, S2 ◦S1) respects
K.

Lemma 4.2.3. If K,Γ{x : σ1} `χ M : τ and K `χ σ2 ≥ σ1, then K,Γ{x : σ2} `χ M : τ .

Proof. Let σ1 = ∀α1
1 :: κ1

1 · · · ∀α1
n :: κ1

n.τ1, and σ2 = ∀α2
1 :: κ2

1 · · · ∀α2
m :: κ2

m.τ2. Since K 
χ σ2 ≥
σ1, we know there is a substitution S such that dom(S) = {α2

1, . . . , α
2
m}, (K{α1

1 :: κ1
1, . . . , α

1
n ::

κ1
n, S) respects K{α2

1 :: κ2
1, . . . , α

2
m :: κ2

m}, and τ1 = S(τ2). The proof follows by induction on
the typing derivation of M :

• Case (Var): M ≡ y and we know that Γ{x : σ1} is well-formed under K and K 
χ Γ{x :
σ1}(y) ≥ τ . To show that K,Γ{x : σ2} `χ y : τ , we need to show that Γ{x : σ2} is
well-formed under K and that K 
χ Γ{x : σ2}(y) ≥ τ , and then to apply the (Var) rule.
To show that Γ{x : σ2} is well-formed under K, we just need to show that σ2 is well-formed
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under K. But, since K 
χ σ2 ≥ σ1, we already know that σ2 is well-formed under K. To
show that K 
χ Γ{x : σ2}(y) ≥ τ , we need to consider two possible scenarios. If x ≡ y,
then we know that K 
χ σ1 ≥ τ and we have to show that K 
χ σ2 ≥ τ , which is easy to
prove using the fact that K 
χ σ2 ≥ σ1. If, on the other hand, x 6≡ y, then the type of x
does not change in Γ and we already know that K 
χ σ1 ≥ τ .

• Case (Const): M ≡ cb, τ ≡ b, and we know that Γ{x : σ1} is well-formed under K. To
show that K,Γ{x : σ2} `χ cb : b, we just need to show that Γ{x : σ2} is well-formed under
K (which we already know to be true) and then to apply the (Const) rule.

• Case (Abs): M ≡ λy.N , τ ≡ τ1 → τ2, and we know that K,Γ{x : σ1, y : τ1} `χ N : τ2. To
show that K,Γ{x : σ2} `χ λy.N : τ1 → τ2, we need to show that K,Γ{x : σ2, y : τ1} `χ N :
τ2 and then to apply the (Abs) rule. But we already know, by the induction hypothesis,
that K,Γ{x : σ2, y : τ1} `χ N : τ2.

• Case (App): M ≡ M1 M2, τ ≡ τ2, and we know that K,Γ{x : σ1} `χ M1 : τ1 → τ2 and
K,Γ{x : σ1} `χ M2 : τ2. To show that K,Γ{x : σ1} `χ M1 M2 : τ2, we need to show that
K,Γ{x : σ2} `χ M1 : τ1 → τ2 and K,Γ{x : σ2} `χ M2 : τ1, and then apply the (App) rule.
But we already know, by the induction hypothesis, that K,Γ{x : σ2} `χ M1 : τ1 → τ2 and
K,Γ{x : σ2} `χ M2 : τ1.

• Case (Let): M ≡ let y = M1 in M2 and we know that K,Γ{x : σ1} `χ M1 : τ and
K,Γ{x : σ1, y : σ} `χ M2 : τ . To show that K,Γ{x : σ2} `χ let y = M1 in M2 : τ , we need
to show that K,Γ{x : σ2} `χ M1 : σ and K,Γ{x : σ2, y : σ} `χ M2 : τ , and then apply the
(Let) rule. But we already know, by the induction hypothesis, that K,Γ{x : σ2} `χ M1 : σ
and K,Γ{x : σ2, y : σ} `χ M2 : τ .

• Case (Rec): M ≡ {l1 = M1, . . . , ln = Mn}, τ ≡ {l1 : τ1, . . . , ln : τn}, and K,Γ{x : σ1} `χ
Mi (1 ≤ i ≤ n). This case can be easily proved using the induction hypothesis.

• Case (Sel): M ≡ N.l, τ ≡ τ2, and we know that K,Γ{x : σ1} `χ N : τ1 and K 
χ τ1 :: {{l :
τ2 ||}}. To show that K,Γ{x : σ2} `χ N.l, we need to show that K,Γ{x : σ2} `χ N : τ1

and K 
χ τ1 :: {{l : τ2 ||}}, and then apply the (Sel) rule. But we already know that
K 
χ τ1 :: {{l : τ2 ||}} and, by the induction hypothesis, that K,Γ{x : σ2} `χ N : τ1.

• Case (Modif): M ≡ modify(M1, l,M2), τ ≡ τ1, and we know that K,Γ{x : σ1} `χ M1 : τ1,
K,Γ{x : σ1} `χ M2 : τ2 and K 
χ τ1 :: {{l : τ2 ||}}. The proof for this case is very similar
to the proof for (Sel).

• Case (Gen): We know that K,Γ{x : σ1} `χ M : τ ′ and Cls(K,Γ{x : σ1}, τ ′) = (K ′, τ).
To show that K ′,Γ{x : σ2} `χ M : τ , we need to show that K,Γ{x : σ2} `χ M : τ ′ and
Cls(K,Γ{x : σ2}, τ ′) = (K ′, σ′). At first sight, it may seem that we cannot apply the
induction hypothesis since we have that K ′ 
χ τ2 ≥ τ1 and not that K 
χ τ2 ≥ τ1. In
fact, since the type closure of τ ′ is a monotype τ , we know, by Definition 2.4.16, that
τ ′ = τ and K ′ = K. This means we can apply the induction hypothesis and conclude that
K,Γ{x : σ2} `χ M : τ ′. Now, we just need to show that Cls(K,Γ{x : σ2}, τ) = (K,σ′).
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Since τ is a monotype, EFTV(K, τ) = ∅, which means that the closure of τ does not depend
on the type of x and Cls(K,Γ{x : σ2}, τ) = Cls(K,Γ{x : σ1}, τ) = (K, τ).

• Case (Contr): M ≡ N \\ l, τ ≡ τ1 − {l : τ2}, and we know that K,Γ{x : σ1} `χ N : τ1 and
K 
χ τ1 :: {{l : τ2 ||}}. The proof for this case is very similar to the proof for (Sel).

• Case (Ext): M ≡ extend(M1, l,M2), τ ≡ τ1 + {l : τ2}, and we know that K,Γ{x : σ1} `χ
M1 : τ1, K,Γ{x : σ1} `χ M2 : τ2 and K 
χ τ1 :: {{|| l : τ2}}.The proof for this case is very
similar to the proof for (Sel).

4.3 Type Inference

In this section, we are going to introduce extended versions of the kinded type inference and
unification algorithms that were first introduced in Section 2.4.

4.3.1 Kinded Unification

In this type-system we will also consider satisfiability of kinded sets of equations modulo χ-
equivalence.

Definition 4.3.1. A substitution S satisfies E if S(τ) ≡χ S(τ ′), for all (τ, τ ′) ∈ E.

The definitions in Section 2.4 that mention unifiers and most general unifiers are also valid in
this type-system.

Notation 4.3.1. Let F range over functions from a finite set of labels to types.

• We write F1 − F2 for the function F such that dom(F) = dom(F1) \ dom(F2) and, for
l ∈ dom(F), F(l) = F1(l).

• For an extensible type χ, we write Fe(χ) and Fc(χ) for the functions that represent the set
of field-addition types and field-removal types of χ, respectively.

Example 4.3.1. Let χ = α + {l1 : τ1} − {l2 : τ2} + {l3 : τ3}. Then Fe(χ) is the function (of
domain {l1, l3}) that sends l1 to τ1 and l3 to τ3 and Fc(χ) is the function (of domain {l2}) that
sends l2 to τ2.

The kinded unification algorithm presented in Section 2.4 is extended to extensible types
as follows.
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(E ∪ {(τ1, τ2)},K, S, SK)⇒Uχ (E,K, S, SK) if τ1 ≡χ τ2

(E ∪ {(α, τ)},K ∪ {(α,U)}, S, SK)⇒Uχ ([τ/α]E, [τ/α]K, [τ/α](S) ∪ {(α, τ)}, [τ/α](SK) ∪ {(α,U)})

if α 6∈ FTV(τ)

(E ∪ {(α1, α2)},K ∪ {(α1, {{F l1 || Fr1 }}), (α2, {{F l2 || Fr2 }})}, S, SK)

⇒Uχ ([α2/α1](E ∪ {(F l1(l),F l2(l)) | l ∈ dom(F l1) ∩ dom(F l2)} ∪ {(Fr1 (l),Fr2 (l)) | l ∈ dom(Fr1 ) ∩ dom(Fr2 )}),

[α2/α1](K) ∪ {(α2, [α2/α1]({{F l1 + F l2 || Fr1 + Fr2 }}))},

[α2/α1](S) ∪ {(α1, α2)}, [α2/α1](SK) ∪ {(α1, {{F l1 || Fr1 }})})

if dom(F l1) ∩ dom(Fr2 ) = ∅ and dom(Fr1 ) ∩ dom(F l2) = ∅

(E ∪ {(α, {F2})},K ∪ {(α, {{F l1 || Fr1 }})}, S, SK)

⇒Uχ ([{F2}/α](E ∪ {(F l1(l),F2(l)) | l ∈ dom(F l1)}),

[{F2}/α](K), [{F2}/α](S) ∪ {(α, {F2)})}, [{F2}/α](SK) ∪ {(α, {{F l1 || Fr1 }})})

if dom(F l1) ⊆ dom(F2), dom(Fr1 ) ∩ dom(F2) = ∅, and α 6∈ FTV({F2})

(E ∪ {({F1}, {F2})},K, S, SK)⇒Uχ (E ∪ {(F1(l),F2(l)) | l ∈ dom(F1)},K, S, SK) if dom(F1) = dom(F2)

(E ∪ {(τ1
1 → τ2

1 , τ
1
2 → τ2

2 },K, S, SK)⇒Uχ (E ∪ {(τ1
1 , τ

1
2 ), (τ2

1 , τ
2
2 )},K, S, SK)

(E ∪ {(α, χ)},K ∪ {(α, {{F l1 || Fr1 }}), (root(χ), {{F l2 || Fr2 }})}, S, SK)

⇒Uχ ([χ/α](E ∪ {(F l1(l), (Fr2 + (F l2 − Fc(|χ|)))(l)) | l ∈ dom(F l1) ∩ dom(Fr2 + (F l2 − Fc(|χ|)))}

∪ {(Fr1 (l),Fc(|χ|)(l)) | l ∈ dom(Fr1 ) ∩ dom(Fc(|χ|))}),

[χ/α](K) ∪ {(root(χ), [χ/α]({{F l2 + (F l1 − (Fr2 + (F l2 − Fc(|χ|)))) || Fr2 + (Fr1 − Fc(|χ|))}}))},

[χ/α](S) ∪ {(α, χ)}, [χ/α](SK) ∪ {(α, {{F l1 || Fr1 }})})

if dom(F l1) ∩ dom(Fc(|χ|)) = ∅, dom(Fr1 ) ∩ dom(Fr2 + (F l2 − Fc(|χ|))) = ∅, and α 6∈ FTV(χ)

(E ∪ {(α1 ±1
1 {l

1
1 : τ1

1 } · · · ±
1
i {l

1
i : τ1

i } · · · ±
1
n {l1n : τ1

n}, α2 ±2
1 {l

2
1 : τ2

1 } · · · ±
2
j {l

2
j : τ2

j } · · · ±
2
m {l1m : τ2

m})},K, S, SK)

⇒Uχ (E ∪ {(τ1
i , τ

2
j ), (α1 ±1

1 {l
1
1 : τ1

1 } · · · ±
1
i−1 {l

1
i−1 : τ1

i−1} ±
1
i+1 · · · ±

1
n {l1n : τ1

n},

α2 ±2
1 {l

2
1 : τ2

1 } · · · ±
2
j−1 {l

2
j−1 : τ2

j−1} ±
2
j+1 · · · ±

2
m {l2m : τ2

m})},K, S, SK)

if (±1
i = ±2

j ∧ l
1
i = l2j ), ∀i < k ≤ n : l1k 6= l2i , and ∀j < r ≤ m : l2r 6= l2j

(E ∪ {(α1 ±1
1 {l

1
1 : τ1

1 } · · · ±
1
n {l1n : τ1

n}, α2 ±2
1 {l

2
1 : τ2

1 } · · · ±
2
m {l2m : τ2

m})},

K ∪ {(α1, {{F l1 || Fr1 }}), (α2, {{F l2 || Fr2 }})}, S, SK)

⇒Uχ (I(E ∪ {(F l1(l),F l2(l)) | l ∈ dom(F l1) ∩ dom(F l2)} ∪ {(Fr1 (l),Fr2 (l)) | l ∈ dom(Fr1 ) ∩ dom(Fr2 )}),

I(K) ∪ {(α, I({{F l1 + F l2 || Fr1 + Fr2 }})},

I(S) ∪ {(α1, α±2
1 {l

2
1 : τ2

1 } · · · ±
2
m {l2m : τ2

m}), (α2, α±1
1 {l

1
1 : τ1

1 } · · · ±
1
n {l1n : τ1

n})}

I(SK) ∪ {(α1, {{F l1 || Fr1 }}), (α2, {{F l2 || Fr2 }})})

where I = [α±2
1 {l

2
1 : τ2

1 } · · · ±
2
m {l2m : τ2

m}/α1, α±1
1 {l

1
1 : τ1

1 } · · · ±
1
n {l1n : τ1

n}/α2]

if dom(F l1) ∩ dom(Fr2 ) = ∅, dom(Fr1 ) ∩ dom(F l1) = ∅, α1 6∈ FTV(α2 ±2
1 {l

2
1 : τ2

1 } · · · ±
2
m {l2m : τ2

m}),

α2 6∈ FTV(α1 ±1
1 {l

1
1 : τ1

1 } · · · ±
1
n {l1n : τ1

m}), ∀1 ≤ i ≤ n, 1 ≤ j ≤ m, l1i 6= l1j , and α is fresh

Figure 4.2: The unification algorithm for the ML-style Calculus with Extensible Types.
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Definition 4.3.2. Let (K,E) be a given kinded set of equations. The kinded unification
function for extensible types Uχ(E,K) that takes a any kinded set of equations, computes a
most general unifier if one exists, and reports failure otherwise is defined by the transformation
rules in Figure 4.2.

Since the constructions present in rule vii) of Definition 4.3.2 are somewhat intricate, we will
state the following facts in hope that they will help the reader better understand this rule. Let
α be type variable and χ an extensible type, both well formed under some kind assignment K,
such that root(χ) = αχ, K(α) = {{F l

1 || F r
1}}, K(αχ) = {{F l

2 || F r
2}}. Also, let us assume that

dom(F l
1) ∩ dom(Fc(|χ|)) = ∅, dom(F r

1 ) ∩ dom(F r
2 + (F l

2 − Fc(|χ|))) = ∅ and α 6∈ FTV(χ):

• Any field that appears in F l
2 was either introduced by the (Sel), (Modif) or (Contr)

rule. This means that the set of the labels that appear in type contractions of χ is
dom(Fc(|χ|)) ⊆ dom(F l

2).

• Any field that appears on F r
2 was introduced by the (Ext) rule. This means that the set of

the labels that appear in type extensions of χ is dom(F r
2 ) ⊆ dom(Fe(|χ|)).

• The set of fields that are guaranteed to appear in a record typed with χ is represented by
the function F r

2 + (F l
2 − Fc(|χ|)) and the set of fields that are guaranteed to not appear in a

record typed with χ is represented by the function Fc(|χ|).

• The set of fields that are guaranteed to exist by K(α), but not by χ, is represented by the
function F l

1 − (F r
2 + (F l

2 − Fc(|χ|)))) and the set of fields that are guaranteed not to exist by
K(α), but not by χ, is represented by the function F r

1 − Fc(|χ|).

Note that we use |χ | instead of χ in Fc(|χ|) so that constructing this function is more straightforward.
That being said, to keep proofs simpler, we do not normalize extensible types during unification.

Example 4.3.2.

({(α1 + {l : α3} − {l : α3}, α2 − {l : α3})}, {α1 :: {{|| l : α3}}, α′ :: {{l : α3 ||}}, α3 :: U}, ∅, ∅)⇒Uχ
({(α1 + {l : α3}, α2)}, {α1 :: {{|| l : α3}}, α2 :: {{l : α3 ||}}, α3 :: U}, ∅, ∅)⇒Uχ
(∅, {α1 :: {{|| l : α3}}, α3 :: U}, {(α2, α1 + {l : α3})}, {(α2, {{l : α3 ||}})})

The most general unifier of the kinded set of equations

({α1 :: {{|| l : α3}}, α2 :: {{l : α3 ||}}, α3 :: U}, {(α1 + {l : α3} − {l : α3}, α2 − {l : α3})})

is the kinded substitution

({α1 :: {{l : α2 ||}}}, {(α2, α1 + {l : α3})}).

We could have defined kinded normalization modulo χ-equivalence. This would simplify
the description of the unification algorithm, but would also make it more abstract and less
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“implementation friendly”. To keep the algorithm closer to its implementation, we could have
added normalization steps with unification steps. This would ensure the algorithm would be
able to unify types that are not in χ-normal form as well. But now this would not only make its
description more complicated again, but its proofs as well. Another more pertinent reason for
considering normalization modulo χ-equivalence has to do with the fact that it might actually
look like it would be the correct way to define the unification algorithm. But this is not true
as can be seen in Example 4.3.3. In fact, both alternatives are (in a sense) equivalent. For
this reason, we decided both to not consider unification modulo χ-equivalence, nor to normalize
extensible types during unification and to accept the fact that its description is going to be more
complicated because of that.

Example 4.3.3. Let K = {α :: {{|| l : α2}}, β :: {{l : α2 ||}}}, χ1 ≡ α + {l : α2} − {l : α2}, and
χ2 ≡ β − {l : α2}. Then |χ1 |≡ α and |χ2 |≡ χ2.

If we unify χ1 and χ2 under K, we obtain the following kinded substitution:

({α :: {{|| l : α2}}}, [α+ {l : α2}/β]);

and the following common instance

α+ {l : α2} − {l : α2} ≡χ α.

If, on the other hand, we unify | χ1 | and | χ2 | under K, we get the following kinded
substitution:

({β :: {{l : α2 ||}}}, [β − {l : α2}/α]);

and the following common instance

β − {l : α2}.

At first sight, ({α :: {{|| l : α2}}}, [α+ {l : α2}/β]) might seem more general than ({β :: {{l :
α2 ||}}}, [β − {l : α2}/α]). In fact, the following equalities also appear to suggest that this is true

[α+ {l : α2}/β](α) ≡ α
[α+ {l : α2}/β](β − {l : α2}) ≡ α+ {l : α2} − {l : α2}

≡χ α

[β − {l : α2}/α](α+ {l : α2} − {l : α2}) ≡ β − {l : α2}+ {l : α2} − {l : α2}

≡χ β − {l : α2}

[β − {l : α2}/α](β − {l : α2}) ≡ β − {l : α2}.

In reality, because equality of substitutions is modulo χ-equivalence (see Definition 4.2.9),
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they are both equally general under Definition 2.4.21.

[β − {l : α2}/α] ◦ [β − {l : α2}+ {l : α2}/β]
= [β − {l : α2}/α, β − {l : α2} − {l : α2}+ {l : α2}/β]
= [β − {l : α2}/α]

[β − {l : α2}+ {l : α2}/β] ◦ [β − {l : α2}/α]
= [β − {l : α2}+ {l : α2}/β, β − {l : α2}+ {l : α2} − {l : α2}/α]
= [β − {l : α2}/α].

Theorem 4.3.1. Algorithm Uχ takes any kinded set of equations and computes a most general
unifier, if one exists; otherwise it fails.

Proof. We will only give a sketch of the proof here. The complete proof can be found in the
Appendix A.

We first show that if the algorithm returns a kinded substitution, then it is a most general
unifier of a given kinded set of equations.

Property 1 is composed out of the following sub-properties:

(1.1) K and K ∪ SK are well-formed kind assignments.

(1.2) E is well-formed under K.

(1.3) S is a well-formed substitution under K.

(1.4) dom(K) ∩ dom(SK) = ∅.

(1.5) dom(SK) = dom(S).

It is easily verified that each transformation rule preserves Property 1 on 4-tuples.

We now state two more properties that are also preserved by each transformation rule:

• Property 2 : For any kinded substitution (K0, S0), if (K0, S0) respects K and S0 satisfies
E ∪ S then (K0, S0) respect SK.

• Property 3 : The set of unifiers of (K ∪ SK,E ∪ S).

We can verify that these two properties are preserved by each transformation rule knowing that
Property 1 holds for the 4-tuple.

Using the previous three properties, we can conclude the correctness of the algorithm. Let
(K,E) be a given kinded set of equations. Suppose the algorithm terminates with (K ′, S). Then
there is some SK such that (E,K, ∅, ∅) is transformed to (∅,K ′, S, SK) by repeated applications
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of the transformation rules. Property 1 trivially holds for (E,K, ∅, ∅), which means that (K ′, S)
is a kinded substitution, and dom(S) ∩ dom(K ′) = ∅. Therefore (K ′, S) respects K ′. S also
trivially satisfies S ∪ ∅, therefore, by Property 2, (K ′, S) also respects SK, therefore, (K ′, S) is
a unifier of (K ′ ∪ SK, ∅ ∪ S). By Property 3, (K ′, S) is also a unifier of (K ′ ∪ SK, ∅ ∪ S). Let
(K0, S0) be any unifier of (K,E). By Property 3, it is also a unifier of (K ′ ∪ SK, ∅ ∪ S). But,
then S0 = S0 ◦ S and (K ′, S) is more general than (K0, S0). Conversely, suppose the algorithm
fails. Then (E,K, ∅, ∅) is transformed to (E′,K ′, S′, SK ′) for some E′,K ′, S′, SK ′ such that
E′ 6= ∅, and no rule applies to (E′,K ′, S′, SK ′). It is clear from the definition of each rule that
(K ′, SK ′, E′ ∪ S′) has no unifier, and therefore, by Property 3, that (K,E) has no unifier. The
termination can be proved by showing that each transformation rule decreases the complexity
measure of the lexicographical pair consisting of the size of the set dom(K) and the total number
of occurrences of type constructors (including base types) in E.

4.3.2 Type Inference Algorithm

Using this extended version of the kinded unification algorithm, we extend the type inference
algorithm presented in Section 2.4 with extensible types.

Definition 4.3.3. Let Γ be a type assignment, K be a kinding environment, M ∈ Λχ and
τ ∈ Tχ. The kinded type inference function for extensible types WKχ(K,Γ,M) that
returns the triple (K ′, S, τ) such that K ′, S(Γ) `χ M : τ is defined inductively in Figure 4.3.

Proposition 4.3.1. If WKχ(K,Γ,M) = (K ′, S, τ), then τ is in χ-normal form.

Proof. The proof is by induction on the structure of M .

• Case x: By definition, |S(τ) | is in normal form.

• Case λx.M : By the induction hypothesis, τ1 is in χ-normal form. Also, by definition,
|S1(α) | is a χ-normal form. Thus |S1(α) |→ τ1 is normal form.

• Case M1 M2: By definition, |S3(α) | is in normal form.

• Case let x = M1 in M2: By the induction hypothesis, τ2 is in normal form.

• Case {l1 = M1, . . . , ln = Mn}: By the induction hypothesis, τn is in χ-normal form. Also,
by definition, |Sn ◦ · · · ◦Si(τi) | (1 ≤ i < n), is in χ-normal form. Thus {l1 :|Sn ◦ · · ·S2(τ1) |
, . . . , li :|Sn ◦ · · · ◦ Si+1(τi) |, . . . , ln : τn} is in χ-normal form.

• Case M.l: By definition, |S2(α1) | is in χ-normal form.

• Case modify(M1, l,M2): By definition, |S3(α2) | is in χ-normal form.

• Case M \\ l: By definition, |S2(α2 − {l : α1}) | is in χ-normal form.

• Case extend(M1, l,M2): By definition, |S2(α2 + {l : α1}) | is in χ-normal form.
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WKχ(K,Γ, x) = if x 6∈ dom(Γ) then fail
else let ∀α1 :: κ1 · · · ∀αn :: κn.τ = Γ(x),

S = [β1/α1, . . . , βn/αn] (β1, . . . , βn are fresh)
in (K{β1 :: S(κ1), . . . , βn :: S(κn)}, id, |S(τ) |)

WKχ(K,Γ, λx.M) = let (K1, S1, τ1) = WKχ(K{α :: U},Γ{x : α},M) (α fresh)
in (K1, S1, |S1(α) |→ τ1)

WKχ(K,Γ,M1 M2) = let (K1, S1, τ1) = WKχ(K,Γ,M1)
(K2, S2, τ2) = WKχ(K1, S1(Γ),M2)
(K3, S3) = U(K2{α :: U},

{(S2(τ1), τ2 → α)}) (α fresh)
in (K3, S3 ◦ S2 ◦ S1, |S3(α) |)

WKχ(K,Γ, let x = M1 in M2) = let (K1, S1, τ1) = WKχ(K,Γ,M1)
(K′1, σ) = Cls(K1, S1(Γ), τ1)
(K2, S2, τ2) = WKχ(K′1, (S1(Γ)){x : σ},M2)

in (K2, S2 ◦ S1, τ2)

WKχ(K,Γ, {l1 = M1, . . . , ln = Mn}) = let (K1, S1, τ1) = WKχ(K,Γ,M1)
(Ki, Si, τi) = WKχ(Ki−1, Si−1 ◦ · · · ◦ S1(Γ),Mi) (2 ≤ i ≤ n)

in (Kn, Sn ◦ · · · ◦ S2 ◦ S1,

{l1 :|Sn ◦ · · · ◦ S2(τ1) |, . . . , li :|Sn ◦ · · · ◦ Si+1(τi) |, . . . , ln : τn})

WKχ(K,Γ,M.l) = let (K1, S1, τ1) = WKχ(K,Γ,M)
(K2, S2) = U(K1{α1 :: U , α2 :: {{l : α1 ||}}},

{(α2, τ1)}) (α1, α2 fresh)
in (K2, S2 ◦ S1, |S2(α1) |)

WKχ(K,Γ,modify(M1, l,M2)) = let (K1, S1, τ1) = WKχ(K,Γ,M1)
(K2, S2, τ2) = WKχ(K1, S1(Γ),M2)
(K3, S3) = U(K2{α1 :: U , α2 :: {{l : α1 ||}}},

{(α1, τ2), (α2, S2(τ1))}) (α1, α2 fresh)
in (K3, S3 ◦ S2 ◦ S1, |S3(α2) |)

WKχ(K,Γ,M \\ l) = let (K1, S1, τ1) = WKχ(K,Γ,M)
(K2, S2) = U(K1{α1 :: U , α2 :: {{l : α1 ||}}},

{(α2, τ1)}) (α1, α2 fresh)
in (K2, S2 ◦ S1, |S2(α2 − {l : α1}) |)

WKχ(K,Γ, extend(M1, l,M2)) = let (K1, S1, τ1) = WKχ(K,Γ,M1)
(K2, S2, τ2) = WKχ(K1, S1(Γ),M2)

in if root(τ1) ∈ FTV(τ2) then fail
else let (K3, S3) = U(K2{α1 :: U , α2 :: {{|| l : α1}}},

{(α1, τ2), (α2, S2(τ1))}) (α1, α2 fresh)
in (K3, S3 ◦ S2 ◦ S1, |S3(α2 + {l : α1}) |)

Figure 4.3: Type inference algorithm WKχ for the ML-style Calculus with Extensible Records.
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Theorem 4.3.2. Given a kinding environment K, a type assignment Γ and M ∈ Λχ. If
WKχ(K,Γ,M) = (K ′, S, τ) then the following properties hold:

• (K ′, S) is a kinded substitution that respects K and K ′, S(Γ) `χ M : τ .

• IfK0, S0(Γ) `χ M : τ0 for some kinded substitutions (K0, S0) and τ0 ∈ Tχ such that (K0, S0)
respects K, then there is some type substitution S′ such that the kinded substitution
(K0, S

′) respects K ′, τ0 ≡χ S′(τ), and S0(Γ) = S′ ◦ S(Γ).

If WKχ(K,Γ,M) fails, then there is no kinded substitution (K0, S0) and τ0 such that (K0, S0)
respects K and K0, S0(Γ) `χ M : τ0.

Proof. Let us start by proving the soundness of the algorithm. The proof is by induction on the
structure of M :

• Case x: Let WKχ(K,Γ, x) = (K{β1 :: κ′1, . . . , βn :: κ′n}, id, | [β1/α1, . . . , βn/αn](τ ′) |), where
κ′i = [β1/α1, . . . , βn/αn](κi), (1 ≤ i ≤ n). For all α ∈ dom(K), K{β1 :: κ′1, . . . , βn ::
κ′n} `χ id(α) :: id(K(α)) ⇐⇒ K{β1 :: κ′1, . . . , βn :: κ′n} `χ α :: K(α), therefore
(K{β1 :: κ′1, . . . , βn :: κ′n}, id) respects K. Also, we know that , (K{β1 :: κ′1, . . . , βn ::
κ′n}, [β1/α1, . . . , βn/αn]) respects K{α1 :: κ1, . . . , βn :: κn}, therefore K{β1 :: κ′1, . . . , βn ::
κ′n} `χ ∀α1 :: κ1 · · · ∀αn :: κn.τ ′ ≥ [β1/α1, . . . , βn/αn](τ ′). By rule (Var), we have that
K{β1 :: κ′1, . . . , βn :: κ′n},Γ `χ x : [β1/α1, . . . , βn/αn](τ ′), therefore, K{β1 :: κ′1, . . . , βn ::
κ′n},Γ `χ x :| [β1/α1, . . . , βn/αn](τ ′) |.

• Case λx.M : Let WKχ(K,Γ, λx.M) = (K1, S1, |S1(α) |→ τ1)(α fresh). By the induction
hypothesis, WKχ(K{α :: U},Γ{x : α},M) = (K1, S1, τ1), (K1, S1) respects K{α :: U}, and
K1, S1(Γ{x : α}) `χ M : τ1. Also, for all for all α′ ∈ dom(K{α :: U}), K1 `χ S1(α′) ::
S1(K{α :: U}(α′)), which means that, for all α′ ∈ dom(K):

– K1 
χ S1(α′) :: S1(K(α′)), if α′ 6≡ α;

– K1 
χ S1(α) :: S1(U) ⇐⇒ K1 `χ S1(α) :: U , if α′ ≡ α.

Therefore, (K1, S1) respects K as well. Also, by the rule (Abs), we have that K1, S1(Γ) `χ
λx.M : S1(α)→ τ1, therefore, K1, S1(Γ) `χ λx.M :|S1(α) |→ τ1.

• Case M1 M2: Let WKχ(K,Γ,M1 M2) = (K3, S3 ◦ S2 ◦ S1, | S3(α) |). By the induction
hypothesis, WKχ(K,Γ,M1) = (K1, S1, τ1), (K1, S1) respects K, K1, S1(Γ) `χ M1 : τ1.
Also, by induction hypothesis, WKχ(K1, S1(Γ),M2) = (K2, S2, τ2), (K2, S2) respects K1

and K2, S2(S1(Γ)) `χ M2 : τ2. By Theorem 2.4.5, (K3, S3) respects K2. By Lemma 4.2.1,
(K3, S3 ◦ S2 ◦ S1) respects K. By Lemma 4.2.2, K3, S3 ◦ S2 ◦ S1(Γ) `χ M1 : S3 ◦ S2(τ1)
and K3, S3 ◦ S2 ◦ S1(Γ) `χ M2 : S3(τ2). By Theorem 2.4.5, S3 ◦ S2(τ1) ≡χ S3(τ2 → α) ≡
S3(τ2)→ S3(α), therefore K3, S3 ◦ S2 ◦ S1(Γ) `χ M1 : S3(τ2)→ S3(α). By rule (App), we
have K,S3 ◦S2 ◦S1(Γ) `χ M1 M2 : S3(α), therefore K3, S3 ◦S2 ◦S1(Γ) `χ M1 M2 :|S3(α) |.
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• Case let x = M1 in M2: Let WKχ(K,Γ, let x = M1 in M2) = (K2, S2 ◦ S1, τ2). By
the induction hypothesis, (K1, S1) respects K, K1, S1(Γ) `χ M1 : τ1. Since (K ′1, σ) =
Cls(K1, S1(Γ), τ1), then by rule (Gen), we have K ′1, S1(Γ) `χ M1 : σ1. By the induction
hypothesis, (K2, S2) respects K ′1, K2, S2 ◦ S1(Γ){x : S2(σ1)} `χ M2 : τ2. Now we show
that, for any α ∈ dom(K), S1(α) is well formed under K ′1. By the definition of the
type inference algorithm and the unification algorithm, if α 6∈ EFTV(K,Γ), then α

does not appear in τ1 or S1, and, therefore, FTV(S1(α)) ⊆ dom(K ′1). Suppose α ∈
EFTV(K,Γ). Then by a simple induction on the derivation of α ∈ EFTV(K,Γ), it is show
that FTV(S1(α)) ⊆ EFTV(K1, S1(Γ)), and, therefore, FTV(S1(α)) ⊆ dom(K ′1). Thus,
in either case, S1(α) is well formed under K ′1. But, then (K ′1, S1) respects K, and by
Lemma 4.2.1, (K2, S2 ◦ S1) respects K. By Lemma 4.2.2, K2, S2 ◦ S1(Γ) `χ M1 : S2(σ1).
By rule (Let), K2, S2 ◦ S1(Γ) `χ let x = M1 in M2 : τ2.

• Case {l1 = M1, . . . , ln = Mn}: Let WKχ(K,Γ, {l1 = M1, . . . , ln = Mn}) = (Kn, Sn ◦ · · · ◦
S2 ◦ S1, {l1 =|Sn ◦ · · · ◦ S2(τ1) |, . . . , li :|Sn ◦ · · · ◦ Si+1(τi) |, . . . , ln = τn}. By the induction
hypothesis, (K1, S1) respects K, K1, S1(Γ) `χ M1 : τ1. Also, by induction hypothesis,
(Ki, Si) respects Ki−1, and Ki, Si ◦ Si−1 ◦ · · · ◦ S1(Γ) `χ τi(2 ≤ i ≤ n). By Lemma 4.2.1,
(Kn, Sn ◦ · · · ◦ S2 ◦ S1) respects K. By Lemma 4.2.2, Kn, Sn ◦ · · · ◦ S2 ◦ S1(Γ) `χ Mi :
Sn ◦ · · · ◦Si+1(τi). By rule (Rec), Kn, Sn ◦ · · · ◦S2 ◦S1(Γ) `χ {l1 = M1, . . . , ln = Mn} : {l1 :
Sn ◦ · · · ◦S2(τ1), . . . , li : Sn ◦ · · · ◦Si+1(τi), . . . , ln : τn}, therefore Kn, Sn ◦ · · · ◦S2 ◦S1(Γ) `χ
{l1 = M1, . . . , ln = Mn} :| {l1 : Sn ◦ · · · ◦ S2(τ1), . . . , li : Sn ◦ · · · ◦ Si+1(τi), . . . , ln : τn} |
and Kn, Sn ◦ · · · ◦ S2 ◦ S1(Γ) `χ {l1 = M1, . . . , ln = Mn} : {l1 :|Sn ◦ · · · ◦ S2(τ1) |, . . . , li :|
Sn ◦ · · · ◦ Si+1(τi) |, . . . , ln : τn}.

• Case M.l: Let WKχ(K,Γ,M.l) = (K2, S2 ◦ S1, | S(α1) |). By Theorem 4.3.1, (K2, S2)
respects K1 and K1, S1(Γ) `χ M : τ1. By Lemma 4.2.1, (K2, S2 ◦ S1) respects K. By
Lemma 4.2.1, K2, S2 ◦ S1(Γ) `χ M : S2(τ1). By Theorem 2.4.5:

– K2 
χ S2(α2) :: S2({{l : α1 ||}});

– K2 
χ S2(τ1) :: {{l : S2(α1) ||}}.

But, then, by rule (Sel), K2, S2 ◦ S1(Γ) `χ M.l : S2(α1), therefore K2, S2 ◦ S1(Γ) `χ M.l :|
S(α1) |.

• Case modify(M1, l,M2): Let WKχ(K,Γ,modify(M1, l,M2)) = (K3, S3 ◦ S2 ◦ S1, |S3(α2) |).
By Theorem 2.4.5, (K3, S3) respects K2{α1 :: U , α2 :: {{l : α1 ||}}}, therefore (K3, S3)
respects K2. By the induction hypothesis, (K1, S1) respects K and K1, S1(Γ) `χ M1 : τ1.
Also, by the induction hypothesis, (K2, S2) respects K1 and K2, S2 ◦ S1(Γ) `χ M2 : τ2.
By Lemma 4.2.1, (K3, S3 ◦ S2 ◦ S1) respects K. By Lemma 4.2.2, K3, S3 ◦ S2 ◦ S1(Γ) `χ
M1 : S3 ◦ S2(τ1) ⇐⇒ K3, S3 ◦ S2 ◦ S1(Γ) `χ M1 : S3(α2) and K3, S3 ◦ S2 ◦ S1(Γ) `χ M2 :
S3(τ2) ⇐⇒ K3, S3 ◦ S2 ◦ S1(Γ) `χ M2 : S3(α1). By Theorem 2.4.5, S3 ◦ S2(τ1) ≡χ S3(α2)
and S3(τ2) ≡χ S3(α1). Also:

– K3 
χ S3(α2) :: S3({{l : α1 ||}});
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– K3 
χ S3 ◦ S2(τ1) :: {{l : S3(α1) ||}} ⇐⇒ K3 `χ S3 ◦ S2(τ1) :: {{l : S3(τ2) ||}}.

Therefore, by rule (Modif), we have that K3, S3 ◦ S2 ◦ S1(Γ) `χ modify(M1, l,M2) : S3(α2),
and K3, S3 ◦ S2 ◦ S1(Γ) `χ modify(M1, l,M2) :|S3(α2) |.

• Case M \\ l: Let WKχ(K,Γ,M \\ l) = (K2, S2 ◦ S1, |S2(α2 − {l : α1}) |). By Theorem 2.4.5,
(K2, S2) respects K1{α1 :: U , α2 :: {{l : α1 ||}}}, therefore (K2, S2) respects K1 as well. By
the induction hypothesis, (K1, S1) respects K and K1,Γ `χ M : τ1. By Lemma 2.4.1,
(K2, S2 ◦S1) respects K. By Lemma 2.4.3, K2, S2 ◦S1(Γ) `χ M : S2(τ1). By Theorem 4.3.1,
S2(α) ≡χ S2(τ1), therefore K2, S2 ◦ S1(Γ) `χ M : S2(α) and K2 `χ S2(τ1) :: S2({{l : α1 |
|}}) ⇐⇒ K2 `χ S2(α2) :: {{l : S(α1) ||}}. By rule (Contr), K2, S2 ◦ S1(Γ) `χ M \\ l :
S2(α2)− {l : S2(α1)}, therefore K2, S2 ◦ S1(Γ) `χ M \\ l :|S2(α2 − {l : α1}) |.

• Case extend(M1, l,M2): Let WKχ(K,Γ, extend(M1, l,M2)) = (K3, S3 ◦S2 ◦S1, |S3(α2 +{l :
α1}) |). By Theorem 2.4.5, (K3, S3) respects K2. By the induction hypothesis, (K1, S1)
respects K and K1, S1(Γ) `χ M1 : τ1. Also, by the induction hypothesis, (K2, S2) respects
K and K2, S2 ◦ S1(Γ) `χ M2 : τ2. By Lemma 4.2.1, (K3, S3 ◦ S2 ◦ S1) respects K. By
Lemma 4.2.2, K3, S3 ◦S2 ◦S1(Γ) `χ M1 : S3 ◦S2(τ1) and K3, S3 ◦S2 ◦S1(Γ) `χ M2 : S3(τ2).
By Theorem 2.4.5, S3(α1) ≡χ S3(τ2) and S3(α2) ≡χ S3 ◦ S2(τ1), therefore K3, S3 ◦ S2 ◦
S1(Γ) `χ M1 : S3(α2), K3, S3 ◦ S2 ◦ S1(Γ) `χ M2 : S3(α1), and K3 `χ S3(α1) :: S3({{|| l :
α1}}) ⇐⇒ K3 `χ S3(τ2) :: {{|| l : S3(α1)}}. By the induction hypothesis, we also know
that root(τ1) 6∈ FTV(τ2). By rule (Ext), we have K3, S3 ◦ S2 ◦ S1(Γ) `χ extend(M1, l,M2) :
S3(α2)+{l : S3(α1)}, therefore K3, S3 ◦S2 ◦S1(Γ) `χ extend(M1, l,M2) :|S3(α2 +{l : α1}) |.

Now, let us prove the completeness of the algorithm. The proof is also by induction on the
structure of M :

• Case x: Let WKχ(K,Γ, x) = (K{β1 :: κ′1, . . . , βn :: κ′n}, id, | [β1/α1, . . . , βn/αn](τ ′) |), where
κ′i = [β1/α1, . . . , βn/αn](κi), (1 ≤ i ≤ n). Also, letK0, S0(Γ) `χ x : τ0 and (K0, S0) respects
K. By the bound variable convention, α1, . . . , αn will not appear in S0. Since β1, . . . , βn

are fresh, they will not appear in S0 as well. But, then (S0(Γ))(x) ≡ ∀α1 :: S0(κ1) · · · ∀αn ::
S0(κn).S0(τ), and there is some S1 such that dom(S1) = {α1, . . . , αn}, S1 ◦ S0(τ) ≡χ τ0,
K0 `χ S1(αi) :: S1 ◦ S0(κi)(1 ≤ i ≤ n). Let S2 = S1 ◦ S0 ◦ [α1/β1, . . . , αn/βn]. Then
(K0, S2) respects K, since dom(K) ∩ (dom(S1) ∪ {α1, . . . , αn}) = ∅, S2(βi) ≡ S1(αi), and
S2 ◦ [β1/α1, . . . , βn/αn](κi) ≡ S1 ◦ S0 ◦ id(κi) ≡ S1 ◦ S0(κi). Therefore K0 `χ S2(βi) :: S2 ◦
[β1/α1, . . . , βn/αn](κi). Thus (K0, S2) respects K{β1 :: [β1/α1, . . . , βn/αn](κ1), . . . , βn ::
[β1/α1, . . . , βn/αn](κn)}. Also, we have S2 ◦ [β1/α1, . . . , βn/αn](τ) ≡ S1 ◦ S0 ◦ id(τ) ≡
S1 ◦ S0(τ) ≡χ S1 ◦ S0(|τ |) ≡χ τ0 and S0(Γ) = S2 ◦ [β1/α1, . . . , βn/αn](Γ).

• Case λx.M : Let WKχ(K,Γ, λx.M) = (K1, S1, | S1(α) |→ τ1)(α fresh). Additionally, let
K0, S0(Γ) `χ λx.M : τ1

0 → τ2
0 and (K0, S0) respect K. But, then K0S0(Γ){x : τ1

0 } `χ
M : τ2

0 . Since α is fresh, it will not appear in S0. Let S′1 = [τ1
0 /α] ◦ S0. Then (K0, S

′
1)

respects K{α :: U}, since τ1
0 is well formed under K, and K0, S

′
1(Γ{x : α}) `χ M : τ2

0 .
Since WKχ(K{α :: U},Γ, {x : α},M) = (K1, S1, τ1) and K0, S

′
1(Γ{x : α}) `χ M : τ2

0 , by
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the induction hypothesis, there is an S′2 such that (K0, S
′
2) respects K1, S

′
2(τ1) ≡χ τ2

0 , and
S′1(Γ{x : α}) = S′2 ◦ S1(Γ{x : α}) ⇐⇒ S′1(Γ){x : τ1

0 } = S′2 ◦ S1(Γ){x : S′2 ◦ S1(α)} ⇒
τ1

0 ≡ S′2 ◦ S1(α). But, then S′2(|S1(α) |→ τ1) ≡χ|S′2(|S1(α) |) |→|S′2(τ1) |≡χ||S′2(S1(α)) |→|
S′2(τ1) ||≡χ|τ1

0 |→|τ2
0 | and S0(Γ) = S′2 ◦ S1(Γ).

• Case M1 M2: Let WKχ(K,Γ,M1 M2) = (K3, S3 ◦ S2 ◦ S1, |S3(α) |). Also, let K0, S0(Γ) `χ
M1 M2 : τ2

0 and (K0, S0) respects K. But, then K0, S0(Γ) `χ M1 : τ1
0 → τ2

0 and
K0, S0(Γ) `χ M2 : τ1

0 . Since WKχ(K,Γ,M1) = (K1, S1, τ1) and K0, S0(Γ) `χ M1 : τ1
0 → τ2

0 ,
we have, by the induction hypothesis, that there is a S′1 such that (K0, S

′
1) respects K,

S′1(τ1) ≡χ τ1
0 → τ2

0 , and S0(Γ) = S′1 ◦ S1(Γ). But, then K0, S
′
1 ◦ S1(Γ) `χ M2 : τ1

0 .
Since WKχ(K1, S1(Γ),M2) = (K2, S2, τ2) and K0, S

′
1 ◦ S1(Γ) `χ M2 : τ1

0 , we have, by the
induction hypothesis, there is a S′2 such that (K0, S

′
2) respects K2, S′2(τ2) ≡χ τ1

0 , and
S′1 ◦ S1(Γ) = S′2 ◦ S2 ◦ S1(Γ) ⇒ S′1 = S′2 ◦ S2. Since α is fresh, it will not appear in
S′2. Let S′3 = [τ2

0 /α] ◦ S′2. Then (K0, S
′
3) respects K2{α :: U}, since (K0, S

′
2) respects

K1 and τ2
0 is well formed under K2. Also, | S′3(S2(τ1)) |≡χ S′3(τ2 → α) ⇐⇒ S′2 ◦

S2(τ1) ≡χ S′2(τ2) → τ2
0 ⇐⇒ S′1(τ1) ≡χ τ1

0 → τ2
0 . Therefore (K0, S

′
3) is an unifier of

(K2{α,U}, {(S2(τ1), τ2 → α)}) and, by Theorem 4.3.1, there is a S′4 such that (K0, S
′
4)

respects K3 and S′3 = S′4 ◦ S3. But, then S′4(|S3(α) |) ≡χ S′4(S3(α)) ≡χ S′3(α) ≡ τ2
0 . Also,

S0(Γ) = S′1 ◦ S1(Γ) = S′2 ◦ S2 ◦ S1(Γ) = [τ2
0 /α] ◦ S′2 ◦ S2 ◦ S1(Γ) = S′3 ◦ S2 ◦ S1(Γ) =

S′4 ◦ S3 ◦ S2 ◦ S1(Γ).

• Case let x = M1 in M2: Let WKχ(K,Γ, let x = M1 in M2) = (K2, S2 ◦ S1, τ2). Also, let
K0, S0(Γ) `χ let x = M1 inM2 : τ2

0 and (K0, S0) respectK. But, thenK ′0, S0(Γ) `χ M1 : τ1
0 ,

Cls(K ′0, S0(Γ), τ1
0 ) = (K0, σ

1
0), and K0, (S0(Γ)){x : σ1

0} `χ M2 : τ2
0 . By Definition 2.4.16

we know that K ′0 = K0{α0
1 :: κ0

1, . . . , α
0
m :: κ0

m} such that {α0
1, . . . , α

0
m} = EFTV(K ′0, τ1

0 ) \
EFTV(K ′0, S0(Γ)), and σ1

0 ≡ ∀α0
1 :: κ0

1 · · · ∀α0
m :: κ0

m.τ
1
0 . By the induction hypothesis, there

is some S1
0 such that (K ′0, S1

0) respects K1, S1
0(τ1) ≡χ τ1

0 , and S0(Γ) = S1
0 ◦ S1(Γ). By

Definition 2.4.16, K1 = K ′1{α1 :: κ1, . . . , αn :: κn} such that {α1, . . . , αn} = EFTV(K1, τ1)\
EFTV(K1, S1(Γ)), and σ1 ≡ ∀α1 :: κ1 · · · ∀αn :: κn.τ1. By the bound variable convention,
{α1, . . . , αn}∩{α0

1, . . . , α
0
m} = ∅. Since (K ′0, S1

0) respectsK1, K0{α0
1 :: κ0

1, . . . , α
0
m :: κ0

m} `χ
S1

0(αi) :: S1
0(κi)(1 ≤ i ≤ n). Let S2

0 be the restriction of S1
0 on dom(S1

0) \ {α1, . . . , αn},
and let S3

0 be the substitutions [S1
0(α1)/α1, . . . , S

1
0(αn)/αn]. We now show that, for each

1 ≤ i ≤ n, S2
0(κi) is well formed under K0{α1 :: S2

0(κ1), . . . , αi−1 :: S2
0(κi−1)}. Since

S1
0(κi) is well formed under K ′0, it is enough to show that FTV(S2

0(κi)) ∩ {τ0
1 , . . . , τ

0
m} = ∅.

Suppose that α ∈ FTV(S2
0(κi)). Then there is some α′ such that α ∈ FTV(S2

0(α′)) and
α′ ∈ FTV(κi). Since αi ∈ EFTV(K1, τ1), by Definition 2.4.14, α′ ∈ EFTV(K1, τ1). By
our assumption on K1, for any j ≥ i, αj 6∈ FTV(κi). Therefore, either α ∈ {α1, . . . , αi−1},
or α ∈ S2

0(EFTV(K1, S1(Γ)). But, it can be shown, by induction on the construc-
tion of EFTV(K1, S1(Γ)), that S2

0(EFTV(K1, S1(Γ)) ⊆ EFTV(K ′0, S0(Γ)). Thus, α 6∈
{α0

1, . . . , α
0
m}, andK0{α1 :: S2

0(κ1), . . . , αn :: S2
0(κn)} is well formed. By a similar argument,

it can also be shown that S2
0(τ1) is well formed under K0{α1 :: S2

0(κ1), . . . , αn :: S2
0(κn)}.

Then (K0{α0
1 :: κ0

1, . . . , α
0
m :: κ0

m}, S3
0) respects K0{α1 :: S2

0(κ1), . . . , αn :: S2
0(κn)}, and

S3
0 ◦ S2

0(τ1) ≡ τ1
0 . Thus, K0 `χ ∀α1 :: S2

0(κ1) · · · ∀αn :: S2
0(κn).S2

0(τ1) ≥ ∀α0
1 :: κ0

1 · · · ∀α0
m ::
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κ0
m.τ

1
0 . Then, by Lemma 4.2.2, K0, (S0(Γ)){x : S2

0(κ1) · · · ∀αn :: S2
0(κn).S2

0(τ1)} `χ M2 : τ2
0 .

Since S2
0(σ1) ≡ S2

0(κ1) · · · ∀αn :: S2
0(κn).S2

0(τ1) and S0(Γ) = S2
0(S1(Γ)), we have that

K0, S
2
0((S1(Γ)){x : σ1}) `χ M2 : τ2

0 . Since (K0, S
1
0) respects K1, we have that (K0, S

2
0)

respects K ′1. Since WKχ(K ′1, S1(Γ){x : σ},M2) = (K2, S2, τ2) and K0, S
2
0((S1(Γ)){x :

σ1}) `χ M2 : τ2
0 , we have, by the induction hypothesis, there is a S4

0 such that (K0, S
4
0)

respects K2, S4
0(τ2) ≡χ τ2

0 , and S4
0 ◦ S2 ◦ S1(Γ) = S2

0 ◦ S1(Γ) = S1
0 ◦ S1(Γ) = S0(Γ).

• Case {l1 = M1, . . . , ln = Mn}: Let WKχ(K,Γ, {l1 = M1, . . . , ln = Mn}) = (Kn, Sn ◦
· · · ◦ S2 ◦ S1, {l1 =| Sn ◦ · · · ◦ S2(τ1) |, . . . , li :| Sn ◦ · · · ◦ Si+1(τi) |, . . . , ln = τn}. Also, let
K0, S0(Γ) `χ {l1 = M1, . . . , ln = Mn} : {l1 : τ1

0 , . . . , ln : τn0 } and (K0, S0) respects K.
But, then K0, S0(Γ) `χ Mi : τ i0(1 ≤ i ≤ n). By the induction hypothesis, there is a
S′i such that (K0, S

′
i) respects Ki, S′i(τi) ≡χ τ i0, S0(Γ) = S′i ◦ Si ◦ · · · ◦ S2 ◦ S1(Γ). In

particular, for i = n, S′n(τn) ≡χ τn0 and S0(Γ) = S′n ◦ Sn ◦ · · · ◦ S2 ◦ S1(Γ). Also, note that
S′n ◦ Sn ◦ · · · ◦ Si+1(τi) ≡χ τ i0.

• Case M.l: Let WKχ(K,Γ,M.l) = (K2, S2 ◦ S1, |S(α1) |). Also, let K0, S0(Γ) `χ M.l : τ1
0

and (K0, S0) respects K. But, then K0, S0(Γ) `χ M : τ2
0 and K `χ τ2

0 :: {{l : τ1
0 ||}}.

Since WKχ(K,Γ,M) = (K1, S1, τ1) and K0, S0(Γ) `χ M : τ2
0 , we have, by the induction

hypothesis, that there is a S′1 such that (K0, S
′
1) respects K1, S′1(τ1) ≡χ τ2

0 , and S0(Γ) =
S1

0 ◦ S1(Γ). Also, K0 `χ S′1(τ1) :: {{l : τ1
0 ||}}. Since α1 and α2 are fresh, they will not

occur in S′1. Let S′2 = [τ1
0 /α1, τ

2
0 /α2] ◦ S′1. Then K0 `χ S′2(α2) :: {{l : S′2(α1) ||}} and

K0 `χ S′2(α2) :: S′2(U) ⇐⇒ K0 `χ S′2(α2) :: U . Note that both τ1
0 and τ2

0 are well
formed under K1. Therefore (K0, S

′
2) respects K1{α1 :: U , α2 :: {{l : α1 ||}}}, since (K0, S

′
2)

respects K1 and dom(K1) ∩ {α1, α2} = ∅, and S′2(α2) ≡ τ2
0 ≡χ S′1(τ1) ≡ S′2(τ1). But, then

(K0, S
′
2) is a unifier of (K1{α1 :: U , α2 :: {{l : α1 ||}}}, {(α2, τ1)}) and, by Theorem 4.3.1,

there is a S′3 such that (K,S′3) respects K2 and S′2 = S′3 ◦ S2. But, then S′3(|S2(α1) |) ≡χ
S′3(S2(α1)) ≡ S′2(α1) ≡ τ1

0 . Also, S0(Γ) = S1
0 ◦ S1(Γ) = S2

0 ◦ S1(Γ) = S3
0 ◦ S2 ◦ S1(Γ).

• Case modify(M1, l,M2): Let WKχ(K,Γ,modify(M1, l,M2)) = (K3, S3 ◦ S2 ◦ S1, |S3(α2) |
). Also, let K0, S0(Γ) `χ modify(M1, l,M2) : τ1

0 and (K0, S0) respects K. But, then
K0, S0(Γ) `χ M1 : τ1

0 , K0, S0(Γ) `χ M2 : τ2
0 , and K0 `χ τ1

0 :: {{l : τ2
0 ||}}. Since

WKχ(K,Γ,M1) = (K1, S1, τ1) and K0, S0(Γ) `χ M1 : τ1
0 , we have, by the induction

hypothesis, that there is a S′1 such that (K0, S
′
1) respects K1, S′1(τ1) ≡χ τ1

0 , and S0(Γ) =
S′1 ◦ S1(Γ). But, then K0, S

′
1 ◦ S1(Γ) `χ M2 : τ2

0 . Since WKχ(K1, S1(Γ),M2) = (K2, S2, τ2)
and K0, S

′
1 ◦S1(Γ) `χ M2 : τ2

0 , we have, by the induction hypothesis, that there is a S′2 such
that (K0, S

′
2) respects K2, S′2(τ2) ≡χ τ2

0 , and S0(Γ) = S′2◦S2◦S1(Γ). Note that S′1 = S′2◦S2.
Since α1 and α2 are fresh, they will not appear in S′2. Let S′3 = [τ1

0 /α2, τ
2
0 /α1] ◦ S′2. Then

K0 `χ S′3(α2) :: {{l : S′3(α1) ||}} and K0 `χ S′3(α1) :: S′3(U) ⇐⇒ K0 `χ S′3(α1) :: U .
Note that τ1

0 and τ2
0 are both well formed under K2. Therefore (K0, S

′
3) respects K2{α1 ::

U , α2 :: {{l : α1 ||}}}. Also, S′3(α1) ≡ τ2
0 ≡χ S′2(τ2) ≡ S′3(τ2) and S′3(α2) ≡ τ1

0 ≡χ S′1(τ1) ≡
S′2 ◦ S2(τ1) ≡ S′3 ◦ S2(τ1). Therefore, (K0, S

′
3) is an unifier of (K2{α1 :: U , α2 :: {{l : α1 ||

}}}, {(α1, τ2), (α2, S2(τ1))}) and, by Theorem 4.3.1, there is a S′4 such that (K0, S
′
4) respects

K3, and S′3 = S′4 ◦ S3. But, then S′4(| S3(α2) |) ≡χ S′4 ◦ S3(α2) ≡ S′3(α2) ≡ τ1
0 . Also,
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S0(Γ) = S′1 ◦ S1(Γ) = S′2 ◦ S2 ◦ S1(Γ) = [τ1
0 /α2, τ

2
0 /α1] ◦ S′2 ◦ S2 ◦ S1(Γ) = S′3 ◦ S2 ◦ S1(Γ) =

S′4 ◦ S3 ◦ S2 ◦ S1(Γ).

• Case M \\ l: Let WKχ(K,Γ,M \\ l) = (K2, S2 ◦ S1, | S2(α2 − {l : α1}) |). Also, let
K0, S0(Γ) `χ M \\ l : τ1

0 − {l : τ2
0 } and (K0, S0) respect K. But, then K0, S0(Γ) `χ M : τ1

0
and K0 `χ τ1

0 :: {{l : τ2
0 ||}}. Since WKχ(K,Γ,M) = (K1, S1, τ1) and K0, S0(Γ) `χ M : τ1

0 ,
we have, by the induction hypothesis, that there is a S′1 such that (K0, S

′
1) respects K1,

S′1(τ1) ≡χ τ1
0 , and S0(Γ) = S1

0 ◦ S1(Γ). But, then K0 `χ S′1(τ1) :: {{l : τ2
0 ||}}. Since α1 and

α2 are fresh, they will not appear in S′1. Let S′2 = [τ1
0 /α2, τ

2
0 /α1] ◦ S′1. Then:

– K0 
χ S′2(α2) :: {{l : S′2(α1) ||}};

– K0 
χ S′2(α1) :: S′2(U) ⇐⇒ K0 `χ S′2(α1) :: U .

Note that both τ1
0 and τ2

0 are well formed under K1. Thus, (K0, S
′
2) respects K1{α1 ::

U , α2 :: {{l : α1 ||}}. Also, S′2(α2) ≡ τ1
0 ≡χ S′1(τ1) ≡ S′2(τ1). Therefore (K0, S

′
2) is a

unifier of (K1{α1 :: U , α2 :: {{l : α1 ||}}}, {(α2, τ1)}) and, by Theorem 4.3.1, there is some
S′3 such that (K0, S

′
3) respects K2 and S′2 = S′3 ◦ S2. But, then S′3(| S2(α2 − {l : α1}) |

) ≡χ S′3 ◦ S2(α2) − {l : S′3 ◦ S2(α1)} ≡ S′2(α2) − {l : S′2(α1)} ≡ τ1
0 − {l : τ2

0 }. Also,
S0(Γ) = S′1 ◦ S1(Γ) = S′2 ◦ S1(Γ) = S′3 ◦ S2 ◦ S1(Γ).

• Case extend(M1, l,M2): Let WKχ(K,Γ, extend(M1, l,M2)) = (K3, S3 ◦S2 ◦S1, |S3(α2 +{l :
α1}) |). Also, let K0, S0(Γ) `χ extend(M1, l,M2) : τ1

0 + {l : τ2
0 } and (K0, S0) respects

K. But, then K0, S0(Γ) `χ M1 : τ1
0 , K0, S0(Γ) `χ M2 : τ2

0 , K0 `χ τ1
0 :: {{|| l : τ2

0 }},
and root(τ1

0 ) 6∈ FTV(τ2
0 ). Since WKχ(K1, S1(Γ),M2) = (K2, S2, τ2) and K0, S

′
1 ◦ S1(Γ) `χ

M2 : τ2
0 , we have, by the induction hypothesis, that the is a S′2 such that (K0, S

′
2)

respects K2, S′2(τ2) ≡χ τ2
0 , and S0(Γ) = S′2 ◦ S2 ◦ S1(Γ) ⇒ S′1 = S′2 ◦ S2. Since both

α1 and α2 are fresh, they will not appear in S′2. Let S′3 = [τ1
0 /α2, τ

2
0 /α1] ◦ S′2. Then

K0 `χ S′3(α2) :: {{|| l : S′3(α1)}} and (K0, S
′
3) respects K2{α1 :: U , α2 :: {{|| l : α1}}}. Also,

S′3(α2) ≡ τ1
0 ≡χ S′1(τ1) ≡ S′2 ◦ S2(τ1) ≡ S′3(τ1) and S′3(α1) ≡ τ2

0 ≡χ S′2(τ2) ≡ S′3(τ2).
Therefore (K0, S

′
2) is a unifier of (K2{α1 :: U , α2 :: {{|| l : α1}}}, {(α1, τ2), (α2, S2(τ1))}) and,

by Theorem 4.3.1, there is some S′4 such that (K0, S
′
4) respects K3 and S′3 = S′4 ◦ S3. But,

then S′4(|S3(α2 + {l : α1}) |) ≡χ S′4(S3(α2 + {l : α1})) ≡ S′4 ◦ S3(α2) + {l : S′4 ◦ S3(α1)} ≡
τ1

0 +{l : τ2
0 }. Also, S0(Γ) = S′1 ◦S1(Γ) = S′2 ◦S2 ◦S1(Γ) = [τ1

0 /α2, τ
2
0 /α1]◦S′2 ◦S2 ◦S1(Γ) =

S′3 ◦ S2 ◦ S1(Γ) = S′4 ◦ S3 ◦ S2 ◦ S1(Γ).

Finally, let us assume that the algorithm fails for some term. Then it is easy to see that there is
no typing for that term.
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Example 4.3.4.

1) WKχ({α1 :: {{|| l : α2}}, α2 :: U}, {x : α1, y : α2}, extend(x, l, y).l)
= ({α1 :: {{|| l : α5}}, α5 :: U}, [α5/α2, α1/α6, α5/α3, α1/α4], α5)

1.1) WKχ({α1 :: {{|| l : α2}}, α2 :: U}, {x : α1, y : α2}, extend(x, l, y))
= ({α1 :: {{|| l : α2}}, α2 :: U}, [α2/α3, α1/α4], α1)

1.1.1) WKχ({α1 :: {{|| l : α2}}, α2 :: U}, {x : α1, y : α2}, x)
= ({α1 :: {{|| l : α2}}, α2 :: U}, id, α1)

1.1.2) WKχ({α1 :: {{|| l : α2}}, α2 :: U}, {x : α1, y : α2}, x)
= ({α1 :: {{|| l : α2}}, α2 :: U}, id, α2)

1.1.3) U({α1 :: {{|| l : α2}}, α2 :: U , α3 :: U , α4 :: {{|| l : α3}}}, {(α3, α2), (α4, α1)})
= ({α1 :: {{|| l : α2}}, α2 :: U}, [α2/α3, α1/α4])

1.2) U({α1 :: {{|| l : α2}}, α2 :: U , α5 :: U , α6 :: {{|| l : α5}}}, {(α6, α1)})
= ({α1 :: {{|| l : α5}}, α5 :: U}, [α5/α2, α1/α6])

Assuming the typing environment

{x : α1, y : α2}

and the kinding environment

{α1 :: {{|| l : α2}}, α2 :: U},

the principal typing of extend(x, l, y).l is ({α1 :: {{|| l : α5}}, α5 :: U}, α5).

In this chapter, we have presented an ML-style calculus with with extensible records and
developed both a typing system based on the notion of kinded quantification and a sound and
complete kinded type inference algorithm based on kinded unification. This will allow us to add
extensible records to EVL.



Chapter 5

Applications

In this chapter we illustrate some applications of the EVL programming language in the context
of CEP and specification of obligation policies and also present some of the applications of the
ML-style calculus with extensible records presented in Chapter 4 for CEP.

5.1 Events

In event processing applications, many events have a similar structure and a similar meaning.
As an example, consider a temperature sensor. On the one hand, all of the events produced by
a temperature sensor have the same kind of information, such as the temperature reading, a
timestamp and its location. On the other hand, it is most probable that each reading results in
different readings. This relationship was also formally defined in [2] as that between Generic
and Specific events.

We will consider events as particular actions or happenings that occur at a particular time.

Definition 5.1.1 (Event Specifications). Given a set of termsM1, . . . ,Mn, defined in a particular
language, an event specification, denoted spec, is a term of the form {l1 = M1, . . . , ln =
Mn}, n > 0, representing a structure with labels l1, . . . , ln and values M1, . . . ,Mn respectively.
An event specification without term variable occurrences is called a ground event specification.

We distinguish between events and generic events (or event schemes). The former
correspond to specific happenings or occurrences and the latter represent sets of events that can
occur in a particular system.

Definition 5.1.2 (Event). A (specific) event is a ground event specification that represents a
particular action/happening, occurring in a system.

Definition 5.1.3 (Generic Event). A generic event (or event scheme) represents a set of
events, defined as ge[x1, . . . , xn] = spec, where x1, . . . , xn are the variables occurring in spec.

77
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Note that a specific event e is associated to a generic event ge by an instantiation relation
`θ e :: ge and that this relation can either be syntactic (e is obtained from ge by replacing
the variables in ge by terms through a substitution mapping θ) or semantic (in which case,
instantiation may require some computation).

5.1.1 Complex Event Processing

Complex Event Processing (CEP), or simply event processing, refers to a set of techniques used
to deal with event streams that include event identification, classification, and response. A
variety of languages to process events have been developed over the years [8, 26, 43]. Event
processing is a key component of Internet-of-Things applications, which need to identify and
react to events in streams of data generated by sensors. In critical domains such as healthcare,
languages with a formal semantics are particularly valuable because there is a need to prove
properties such as correctness, security, and safety of applications. In the context of security and,
in particular, when modelling access control, it is often the case that granting or denying access
to certain resources depends on the occurrence of a particular event [9, 10, 35]. In fact, this is
even more crucial in access control systems dealing with obligations. In these systems, the status
of a particular obligation is usually defined in terms of occurrences of events in the system and
several models that deal with obligations have to deal in some way with the notion of an event.

The area of CEP comprises a series of techniques to deal with streams of events such as event
processing, detection of patterns and relationships, filtering, transformation and abstraction,
amongst others. See [26] for a detailed reference on the area.

Event processing agents are classified according to the actions that they perform to process
incoming events [26].

Definition 5.1.4 (Filter event processing agent). A filter agent is an event processing agent
that performs filtering only, so it does not transform the input event.

Definition 5.1.5 (Transformation event processing agent). A transformation agent is an
event processing agent that includes a derivation step, and optionally also a filtering step.

Definition 5.1.6 (Translate event processing agent). A translate agent can be used to convert
events from one type to another, or to add, remove, or modify the values of an event’s attributes.

Definition 5.1.7 (Aggregate event processing agent). An aggregate agent takes a stream of
incoming events and produces an output event that is a map of the incoming events.

Definition 5.1.8 (Compose event processing agent). A compose agent takes two streams of
incoming events and processes them to produce a single output stream of events.

Definition 5.1.9 (Pattern Detect event processing agent). A pattern detect agent performs
a pattern matching function on one or more input streams. It emits one or more derived events
if it detects an occurrence of the specified pattern in the input events.
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The notions of specific and generic events are also a key aspect in CEP, where instead of
defining the structure of each event individually, one wants to be able to specify the structure of
an entire class of events. Generic events can then be related to other (generic or specific) events
through semantic relations.

5.2 EVL for Event Processing

In EVL, events are represented using records typed with record types. In this section, we are
going to present some examples that illustrate how EVL can be used for event processing.

5.2.1 CEP

In this section we explore the higher-order capabilities of EVL to define higher-order parameterised
functions that deal with the usual CEP techniques. The canonical model [17, 26] for event
processing is based on a producer-consumer model: an event processing agent (EPA) takes events
from event producers and distributes them among event consumers. Using EVL we are able to
process raw events produced by some event processing system and to generate derived events
that can then be passed on to an event consumer as a result.

5.2.1.1 Event Processing Agents

Below we give some examples that show how the standard types of EPAs can be defined in EVL. An
event processing agent is any function whose principal type is of the form ∀α1 :: κ1 · · · ∀αn :: κn.γ.

Filter agents take an incoming event object and apply a test to decide whether to discard it
or whether to pass it on for processing by subsequent agents. The test is usually stateless, i.e.
based solely on the content of the event instance.

Example 5.2.1. This example represents an event processing agent that uses a higher-order
filter function filter to filter events according to their location.

let p = λx.(x.location) == "Porto"String in (filter p)

Assuming that

filter : ∀α1 :: U .∀α2 :: {{empty : Bool}}.∀α3 :: {{empty : Bool, head : α1, tail : α2}}.(α1 → Bool)→ α3 → α2

and

( == ) : String→ String→ Bool,

its principal typing is

({α1 :: {{empty : Bool, head : α2, tail : α3}}, α2 :: {{location : String}}, α3 :: {{empty : Bool}}}, α1 → α3).
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Let

M ≡ λself.λp.λlist.if list.empty then list

else if (p list.head) then cons list.head (self self p list.tail)
else self self p list.tail,

P ≡ λx.(x.location) == "Porto"String,

N0 ≡ {empty = TrueBool}

N1 ≡ {empty = FalseBool, head = {location = tail =}, tail = N0},

and

N2 ≡ {empty = FalseBool,head = {location = "Porto"String}, tail = N1}.

Assuming the usual operational semantics for ( == ), we can evaluate the following program
using the operational semantics defined for the EVL language in Chapter 3 as follows:

E[let filter = M in let p = P in filter filter p N2]

⇒E E[let p = P in M M p N2]

⇒E E[M M P N2]

⇒E E[(λp.λlist.if list.empty then list

else if (p list.head) then cons list.head (M M p list.tail) else M M p list.tail) P N2]

⇒E E[(λlist.if list.empty then list

else if (P list.head) then cons list.head (M M P list.tail) else M M P list.tail) N2]

⇒E E[if N2.empty then N2

else if (P N2.head) then cons N2.head (M M P N2.tail) else M M P N2.tail)]

⇒E E[if FalseBool then N2

else if (P N2.head) then cons N2.head (M M P N2.tail) else M M P N2.tail]

⇒E E[if (P N2.head) then cons N2.head (M M P N2.tail) else M M P N2.tail]

⇒E E[if (P N2.head) then cons N2.head (M M P N2.tail) else M M P N2.tail]

⇒E E[if (P {location = "Porto"String}) then cons N2.head (M M P N2.tail) else M M P N2.tail]

⇒E E[if ({location = "Porto"String}.location == "Porto"String)

then cons N2.head (M M P N2.tail) else M M P N2.tail]

⇒E E[if ("Porto"String == "Porto"String) then cons N2.head (M M P N2.tail)

else M M P N2.tail]

⇒E E[if TrueBool then cons N2.head (M M P N2.tail) else M M P N2.tail]

⇒E E[cons N2.head (M M P N2.tail)]

⇒E E[cons {location = "Porto"String} (M M P N2.tail)]

⇒E E[cons {location = "Porto"String} (M M P N1)]

⇒E · · ·

⇒E E[cons {location = "Porto"String} (M M P N1.tail)]

⇒E E[cons {location = "Porto"String} (M M P N0)]

⇒E · · ·

⇒E E[cons {location = "Porto"String} {empty = TrueBool}]

⇒E E[{empty = FalseBool, head = {location = "Porto"String}, tail = {empty = TrueBool}}]

⇒E {empty = FalseBool, head = {location = "Porto"String}, tail = {empty = TrueBool}}

Transformation agents can be either stateless (if events are processed without taking into
account preceding or following events) or stateful (if the way events are processed is influenced by
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preceding or following events). In the former case, events are processed individually. In the latter,
the way events are processed can depend on preceding or succeeding events. Transformation
events can be further classified as translate, split, aggregate or compose agents.

We now give some examples of transformation agents written in EVL.

Example 5.2.2. This example represents a translate event processing agent that converts the
temperature field of an event from degrees Fahrenheit to degrees Celsius.

farToCel ≡ λx.modify(x, temperature, ((x.temperature) - 32.0Float) / 1.8Float))

Assuming that

( - ) : Float→ Float→ Float

and

( / ) : Float→ Float→ Float,

its principal typing is

({α1 :: {{temperature : Float}}}, α1 → α1).

Assuming the usual operational semantics for the ( - ) and ( / ) operators, we can evaluate the
following program using the operational semantics defined for the EVL language in Chapter 3 as
follows:

E [λx.modify(x, temperature, ((x.temperature) - 32.0Float) / 1.8Float)) {temperature = 50.0Float}]
⇒E E [modify({temperature = 50.0Float}, temperature,

(({temperature = 50.0Float}.temperature) - 32.0Float) / 1.8Float))]
⇒E E [modify({temperature = 50.0Float}, temperature, ((50.0Float - 32.0Float) / 1.8Float))]
⇒E E [{temperature = 10.0Float}]
⇒E {temperature = 10.0Float}

Example 5.2.3. This example represents an aggregate event processing agent that receives two
events, x and y, and outputs event y with its precipitation level updated with the average of the
two.

avgPrecip ≡ λxy.modify(y,precipitation, ((x.precipitation) + (y.precipitation)) / 2.0Float))

Assuming that

( + ) : Float→ Float→ Float,

its principal typing is

({α1 :: {{precipitation : Float}}, α2 :: {{precipitation : Float}}}, α1 → α2 → α2).
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Assuming the usual operational semantics for the ( + ) and ( / ) operators, we can evaluate the
following program using the operational semantics defined for the EVL language as follows:

E [λxy.modify(y,precipitation, ((x.precipitation) + (y.precipitation)) / 2.0Float))
{precipitation = 10.0Float} {precipitation = 20.0Float}]

⇒E E [λy.modify(y,precipitation,
(({precipitation = 20.0Float}.precipitation)+

(y.precipitation)) / 2.0Float)) {precipitation = 10.0Float}]
⇒E E [modify({precipitation = 10.0Float}, precipitation,

(({precipitation = 20.0Float}.precipitation)+
({precipitation = 10.0Float}.precipitation)) / 2.0Float))]

⇒E E [modify({precipitation = 10.0Float}, precipitation, ((20.0Float) + (10.0Float) / 2.0Float))]
⇒E E [modify({precipitation = 10.0Float},precipitation, 15.0Float)]
⇒E E [{precipitation = 15.0Float}]
⇒E {precipitation = 15.0Float}

Example 5.2.4. This example represents an event processing agent that composes the partial
weather information that is provided by two different sensors. One of the sensors outputs
event x, which contains information about the temperature and wind velocity, and the other
sensor outputs event y, which contains information about the humidity and precipitation levels.
This event processing agent outputs an instance of WeatherInfo with the complete weather
information.

composeInfo ≡ λxy.WeatherInfo x.temperature x.wind y.humidity y.precipitation

Assuming that

WeatherInfo :

Float→ Float→ Float→ Float→ {temperature : Float,wind : Float, humidity : Float,precipitation : Float},

its principal typing is

({α1 :: {{temperature : Float,wind : Float}}, α2 :: {{humidity : Float, precipitation : Float}}},
α1 → α2 → {temperature : Float,wind : Float,humidity : Float, precipitation : Float}).

Let M ≡ {temperature = 120.0Float,wind = 40.0Float} and N ≡ {humidity = 70.0Float,

precipitation = 10.0Float}. We can evaluate the following program using the operational semantics
defined for the EVL language in Chapter 3 as follows:

E [letEv WeatherInfo
= λx1x2x3x4.{temperature = x1,wind = x2,humidity = x3, precipitation = x4}

in (λxy.WeatherInfo x.temperature x.wind y.humidity y.precipitation) M N ]
⇒E E [(λxy.(λx1x2x3x4.{temperature = x1,wind = x2, humidity = x3, precipitation = x4})

x.temperature x.wind y.humidity y.precipitation) M N ] · · ·



5.2. EVL for Event Processing 83

· · · ⇒E E [(λy.(λx1x2x3x4.{temperature = x1,wind = x2, humidity = x3, precipitation = x4})
M.temperature M.wind y.humidity y.precipitation) N ]

⇒E E [(λx1x2x3x4.{temperature = x1,wind = x2,humidity = x3, precipitation = x4})
M.temperature M.wind N.humidity N.precipitation)]

⇒E E [(λx1x2x3x4.{temperature = x1,wind = x2,humidity = x3, precipitation = x4})
120.0Float M.wind N.humidity N.precipitation]

⇒E E [(λx1x2x3x4.{temperature = x1,wind = x2,humidity = x3, precipitation = x4})
120.0Float 40.0Float N.humidity N.precipitation]

⇒E E [(λx1x2x3x4.{temperature = x1,wind = x2,humidity = x3, precipitation = x4})
120.0Float 40.0Float 70.0Float N.precipitation]

⇒E E [(λx1x2x3x4.{temperature = x1,wind = x2,humidity = x3, precipitation = x4})
120.0Float 40.0Float 70.0Float 10.0Float]

⇒E E [(λx2x3x4.{temperature = 120.0Float,wind = x2,humidity = x3, precipitation = x4})
40.0Float 70.0Float 10.0Float]

⇒E E [(λx3x4.{temperature = 120.0Float,wind = 40.0Float, humidity = x3, precipitation = x4})
70.0Float 10.0Float]

⇒E E [(λx4.{temperature = 120.0Float,wind = 40.0Float, humidity = 70.0Float,precipitation = x4})
10.0Float]

⇒E E [{temperature = 120.0Float,wind = 40.0Float,humidity = 70.0Float, precipitation = 10.0Float}]
⇒E {temperature = 120.0Float,wind = 40.0Float, humidity = 70.0Float, precipitation = 10.0Float}

Pattern Detect agents take collections of incoming event objects and examine them to see
if they can spot the occurrence of particular patterns.

Example 5.2.5. The following function is an event processing agent that generates an instance
of the FireDanger event depending on the weather conditions.

checkWeather ≡ λx.if (x.temperature > 29.0Float and x.wind > 32.0Float

and x.humidity < 20.0Float and x.precipitation < 50.0Float)
then FireDanger x.location "high"String

else FireDanger x.location "low"String

Assuming that

> : Float→ Float→ Bool,

< : Float→ Float→ Bool,

and : Bool→ Bool→ Bool,

and

FireDanger : String→ String→ {location : String,danger : String},
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its principal typing is

({α1 :: {{temperature : Float,wind : Float, humidity : Float,precipitation : Float}}, location : String},
α1 → {location : String, danger : String}).

Let M ≡ {temperature = 30.0Float,wind = 33.0Float,humidity = 18.0Float,precipitation =
10.0Float, location = "Porto"String}. Assuming the usual operational semantics for the ( < ),
( > ) and logical ( and ) operators, we can evaluate the following program using the operational
semantics defined for the EVL language in Chapter 3 as follows:

E [letEv FireDanger = λxy.{location = x, danger = y}

in (λx.if (x.temperature > 29.0Float and x.wind > 32.0Float

and x.humidity < 20.0Float and x.precipitation < 50.0Float)
then FireDanger x.location "high"String

else FireDanger x.location "low"String) M ]
⇒E E [(λx.if (x.temperature > 29.0Float and x.wind > 32.0Float

and x.humidity < 20.0Float and x.precipitation < 50.0Float)
then (λxy.{location = x, danger = y}) x.location "high"String

else (λxy.{location = x, danger = y}) x.location "low"String) M ]
⇒E E [if (M.temperature > 29.0Float and M.wind > 32.0Float

and M.humidity < 20.0Float and M.precipitation < 50.0Float)
then (λxy.{location = x,danger = y}) M.location "high"String

else (λxy.{location = x,danger = y}) M.location "low"String]
⇒E E [if (30.0Float > 29.0Float and 33.0Float > 32.0Float

and 18.0Float < 20.0Float and 10.0Float < 50.0Float)
then (λxy.{location = x, danger = y}) M.location "high"String

else (λxy.{location = x, danger = y}) M.location "low"String]
⇒E E [if TrueBool then (λxy.{location = x,danger = y}) M.location "high"String

else (λxy.{location = x, danger = y}) M.location "low"String]
⇒E E [(λxy.{location = x, danger = y}) M.location "high"String]
⇒E E [(λxy.{location = x, danger = y}) "Porto"String "high"String]
⇒E E [(λy.{location = "Porto"String, danger = y}) "high"String]
⇒E E [{location = "Porto"String,danger = "high"String}]
⇒E {location = "Porto"String, danger = "high"String}

5.2.1.2 A Higher-Order Library for CEP

Since EVL is a higher-order language, we use higher-order functions that allow us to deal with
a sequence of events (represented as a list of events). We now provide some of these useful
higher-order functions, which are naturally implemented in a higher-order functional language.

• filter is a function that filters the events in the sequence according to some filtering
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expression:

filter ≡ λp.λlist.if list.empty then list

else if (p list.head)
then cons list.head (filter p list.tail)
else filter p list.tail

• transform is a function that applies a transformation to all of the events in the sequence:

transform ≡ λf.λlist.if list.empty then list

else cons (f list.head) (transform f list.tail)

• aggregater is a function that produces some output value by aggregating by right
association the events of the sequence according to some binary aggregating function:

aggregater ≡ λfz.if list.empty then z
else f list.head (aggregater f z list.tail)

• aggregatel is very similar to aggregater but it aggregates the events by left associa-
tion:

aggregater ≡ λfz.if list.empty then z
else aggregatel f (f z list.head) list.tail

Note that we cannot assign types to the higher-order functions because they are recursive
and we do not have recursive types on our type-system. For Example 5.2.1 we can assume a
non-recursive type for filter simply because of the way we decided to encode lists using records.
However, we cannot infer a type for filter. In fact, if we were to implement the filter
function in a language that supported recursive types, we would either have to use some kind
of letrec or to make explicit the recursive nature of the function’s definition as was done in
Example 5.2.1.

The following example is intended to illustrate several features described in this section.

Example 5.2.6. Consider a sequence of events produced by sensors distributed across some
number of locations. The events produced by a particular sensor contains information about
the weather conditions at that sensor’s location. More specifically, it contains information about
the temperature (in degrees Celsius), the humidity level (as a percentage), the wind speed (in
km/h) and the amount of precipitation (in mm), as well as information about its location. Now,
consider an EPA that infers the fire danger of a particular location based on a given sequence of
events produced by an arbitrary number of these sensors. This can be done with varying degrees
of accuracy, but this is not the subject of this paper, so let us consider a simple algorithm based
on the following three steps:
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1. Filtering the events according to the specified location;

2. Aggregating the events according to the latest values of temperature, humidity and wind
speed, and by the mean precipitation;

3. Producing an event that indicates if there is fire danger in that particular location considering
the values obtained in the previous step and comparing them to their threshold levels.

We now provide an implementation of this algorithm in EVL:

letEv FireDanger = λl.λd.{location = l,danger = d}

in let p = λx.x.location == "Porto"String

in let f = λxy.(x.fst + 1Int,

modify(y,precipitation, (x.snd.precipitation + y.precipitation) / x.fst))
in let checkWeather = if (x.temperature > 29.0Float and x.wind > 32.0Float

and x.humidity < 20.0Float and x.wind < 50.0Float)
then FireDanger x.location "high"String

else FireDanger x.location "low"String

in λx.checkWeather (aggregatel f (1Int, {precipitation = 0}) (filter p x)).snd

5.2.1.3 Typing Relations On Events

We now discuss the different semantic relations between events, which are captured by EVL’s
type-system.

Specialization The specialization relation indicates that an event is a specialization of another
event.

In the type theory of EVL, this relation is given by the instantiation relation ≥, given in
Definition 2.4.15.

Example 5.2.7. Let ge1 be a generic event with type ∀α :: U∀γ :: {{l1 : α}}.γ and ge2 be a
generic event with type ∀γ :: {{l1 : Int}}.γ. Then ge2 is specialization of ge1 since

∅ 
 ∀α :: U∀γ :: {{l1 : α}}.γ ≥ ∀γ :: {{l1 : Int}}.γ.

Generalization The generalization relation indicates that an event is a generalization of
another event.

In the type theory of EVL, this relation is also given by the instantiation relation ≥, given in
Definition 2.4.15.

Example 5.2.8. Let ge1 be a generic event with type ∀α :: U .∀γ :: {{l1 : α}}.γ and ge2 be a
generic event with type ∀γ :: {{l1 : Int}}.γ. Then ge1 is generalization of ge2 since

∅ 
 ∀α :: U∀γ :: {{l1 : α}}.γ ≥ ∀γ :: {{l1 : Int}}.γ.
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Membership A generic event ge1 is said to be a member of another generic event ge2 if the
instances of ge1 are included in the instances of ge2.

In EVL this notion is verified by the instantiation relation given in Definition 2.4.15, as well.

Let ge1 : σ1 and ge2 : σ2 be such that σ1 and σ2 are well-formed under the kinding environment
K. We say that ge1 is a member of ge2 if, for all σ ∈ TEVL, if K 
O σ1 ≥ σ, then K 
 σ2 ≥ σ.

Example 5.2.9. Let ge1 be a generic event with type ∀α :: U .∀γ :: {{l1 : α}}.γ and ge2 be a
generic event with type ∀γ :: {{l1 : Int}}.γ. Then ge2 is a member of ge1 since for all σ, if

∅ 
 ∀γ :: {{l1 : Int}}.γ ≥ σ,

then

∅ 
 ∀α :: U∀γ :: {{l1 : α}}.γ ≥ σ.

But note that ge1 is not a member of ge2 since, for σ = {l1 : Float},

∅ 
 ∀α :: U∀γ :: {{l1 : α}}.γ ≥ {l1 : Float},

but

∅ 
 ∀γ :: {{l1 : Int}}.γ 6≥ {l1 : Float}.

Note that, by Lemma 2.4.2, if a generic event is a specialization of another event, then it is
also a member of that event.

Retraction A retraction event relationship is a property of an event referencing a second event.
It indicates that the second event is a logical reversal of the event type that references it. For
example, an event that starts a fire alert and the event that stops it. Unlike the previous notions,
retraction is not directly addressed by EVL. Retraction is a notion that is also present in access
control systems that deal with obligations, where the correct treatment of events is crucial. We
will briefly discuss the treatment of events in obligation models in the next section.

5.2.2 Event Processing in Obligation Models

The notion of event and an adequate processing of events is essential to the treatment of obligations
in access control models. Obligations are usually associated with some mandatory action that
must be performed at a time defined by some temporal constraints or by the occurrence of an
event. The Category Based Metamodel for Access Control with Obligations (CBACO) [3] defines
an obligation as a tuple o = (a, r, ge1, ge2), where a is an action, r a resource, and ge1, ge2 two
generic events (ge1 triggers the obligation, and ge2 ends it). The model relies on two additional
relations on events:
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• Event Instantiation: denoted e :: ge, meaning that the event e is an instance of ge,
according to an instance relation between events and generic events.

• Event Interval: denoted (e1, e2, h)), meaning that the event e2 closes the interval started
by the event e1 in an history of events h.

As we have discussed in the previous section, the notion of event instantiation is captured by the
type-system of EVL. With respect to event intervals, this notion is closely related to the notion of
retraction in CEP and was addressed in [2] by the definition of a closing function that describes
how events are linked to subsequent events in history. These functions are assumed to be defined
for each system and are used to extract intervals from a given history. One of the motivations to
develop EVL was to provide a simple language in which we can program such functions.

5.2.3 CEP using Extensible Records

Although EVL allows us to adequately deal with the notion of generic events and has the potential
of providing a formal semantics to Complex Event Processing (CEP) systems, the lack of support
for extensibility is one of its limitations. In fact, the ability to extend a record with a new
field or remove an existing field from a record is often very useful for the processing of complex
events. In Chapter 4 we address this limitation and develop a polymorphic record calculus with
extensible records, i.e., records that can have new fields added to them, or preexisting fields
removed from them. This ML-style calculus still allows us to represent polymorphic versions of
various types of record operations such as field selection and modification, but is also powerful
enough to represent field addition and removal. In this section we provide some examples of the
use of these operations in the context of CEP.

Example 5.2.10. This example represents a translate event processing agent that converts the
Fahrenheit field to Celsius and adds that new temperature to the event.

addFarCel ≡ λx.extend(x, celsius, (x.fahrenheit) - 32.0Float) / 1.8Float)

Example 5.2.11. This example represents a compose event processing agent that receives two
events, x and y, and outputs event y with addition of a field with the average precipitation level
of the two.

addAvgPrecip ≡λxy.extend(y, avg_precipitation,
(x.precipitation) + (y.precipitation)) / 2.0Float))

In future work, we would like to add matching primitives to EVL in order to more easily
decompose and process data. This is especially useful for detecting patterns, i.e., the presence of
a common set of fields, in a sequences of events, which is a key notion in most CEP systems.
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Related Work

6.1 Type Systems for Record Calculi with Extensible Records

Following Ohori’s approach in [46], we were able to give EVL a type system that supports the
basic operations on records with a sound and complete type inference algorithm. Nevertheless,
we found that adding more powerful operation on records such as field addition and removal
could greatly improve the language’s applicability in the context of CEP.

There are several alternative type systems that support polymorphic records with some form
of record extensibility. The most common techniques are based on either subtyping [14, 37] or
row variables [32, 49, 52, 54], but there are also others based on flags [48, 50], predicates [28, 33]
and scope variables [42].

6.1.1 Subtyping

This is one of the most commonly used techniques used for building type systems for records [12,
13, 15, 47]. We can defined a subtyping relation, by specifying that a record type l1 : τ1, . . . , ln : τn
is a subtype of another record type {l′1 : τ ′1, . . . , l′m : τ ′m}, denoted by l1 : τ1, . . . , ln : τn ≤ {l′1 :
τ ′1, . . . , l

′
m : τ ′m}, if {l1, . . . , ln} ⊆ {l′1, . . . , l′m}. As an example, we have the following

{one : Int, two : Int} ≤ {one : Int, two : Int, three : Int}.

The intuition here is that we should be able to use a record of type {one : Int, two : Int, three : Int},
in any context where a record of type {one : Int, two : Int} is expected. In particular, the field
selection operation on records M.l can be treated as a function of the following type:

∀α.∀β ≤ {l : α}.β → α.

One weakness of this approach is that information about the other fields of the record is lost, so it
is harder to describe operations on records such as field addition and removal. This complicates
compilation and will require some degree of dynamic typing during runtime to compensate for
the loss of information.

89
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6.1.2 Row Variables

Several approaches dealing with the extensibility of records are based on Wand’s notion of a
row variable [50]. Row variables are variables that range over sets of fields and allow for the
incremental construction of records. As an example, a record of type

{l : τ | r}

has all of the fields of a record of type r, together with a field with label l and of type τ . The
field selection operation on records M.l would have the type:

∀α∀r.{l : α | r} → α.

Wand did not discuss compilation, but his approach supports both polymorphism and extensibility.
However, unlike our type system for the ML-style polymorphic record calculus with extensible
records, operations are unchecked. As an example, adding a field with label l to a row may either
add a completely new field, or simply replace an existing field labelled with l. As a result, some
programs do not have principal types [53].

6.1.3 Flags

Flexible treatments for extensible records have been constructed around the concept of row
variables [47, 48]. Rémy did this by developing a natural extension of ML. A key feature of
his system is the use of flags to encode both positive and negative information on records, i.e.,
information about what fields must be present, and which must be absent. Row variables were
used to deal with fields whose presence or absence is not significant in a particular situation. As
an example, the field selection operator has type:

∀α.∀r.{l : pre(α) | r} → α,

where pre(α) is a flag indicating the presence of a field of type α, and r is a row variable
representing the rest of the record. Unfortunately, despite its flexibility to define various powerful
operations on records, this technique does not lead to a simple and efficient implementation. This
is partially due to the fact that it still retains the ability to support some unchecked operations.

6.1.4 Predicates

Harper and Pierce [33, 34] have studied type systems for extensible records where negative and
positive information on records is captured by predicates on types. In fact, using predicates they
were able to develop a system with checked operations. As an example, if we write r1#r2 for the
assertion that record types r1 and r2 have disjoint sets of labels, the field selection operator has
type:

∀α∀r.(r#{l : α} ⇒ (r || {l : α})→ α,
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where r1 || r2 is the record type obtained by merging r1 and r2, and is only defined if r1#r2.
Their work does not deal with type inference or compilation, and does not provide an operational
interpretation of predicates.

6.1.5 Qualified Types

The use of predicates for the development of a type system for extensible records was one of the
motivating examples in Jones’ work on qualified types [38, 39]. In his work, a general framework
for type inference and compilation was developed, including a type system for extensible records
as a special case.

Building on this work is the approach by Gaster and Jones [28, 29]. Their approach combines
both the notion of row variables and qualified types. It is perhaps the work that is more closely
related to ours. Row variables are used to capture positive information, while predicates are used
to capture negative information in order to avoid duplicating labels. As an example, the field
operator has type:

(r \ l)⇒ {l : α | r} → α,

where the predicate (r \ l) restricts instantiation of r to record types without an l-labelled field.

In our approach, kind restrictions capture both negative and positive information on records.
Because of this, constraints on both field addition and removal can be treated in an uniform way.

6.1.6 Scoped Labels

Building on the work of Wand, Rémy, and Gaster and Jones [29, 50, 52], Leijen has developed a
polymorphic type system for extensible records based on scoped labels [42]. His type system
implements free extensions, i.e., the extension of a record with a field that is already present. As
an example, consider the following record:

{name = "John"}

Because of free extension, the following extension of the previous record with the field (name =
"Joe") is also valid:

{{name = "John"} | name = "Joe"}.

Approaches using free extensions usually overwrite the previous field with the new field. By
introducing a scoping mechanism for labels, Leijen is able to always keep previous fields, both
in the value and in the type, while removing ambiguity and ensuring the safety of operations.
In this system, the concepts of update and extension are separate operations work on the first
matching label in a record. As an example, we should get "Joe" from

{{name = "John"} | name = "Joe"}.name,
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and "John" from

(({{name = "John"} | name = "Joe"}) \\ name).name.

Because of this choice of semantics, it is always possible to unambiguously select a particular
field from a record. But a new notion of equality between types where the record types are
considered equal up to permutation of distinct labels is required in order to be able to compute
more complicated field selections.

Free extensions are susceptible to programming errors where one unknowingly extends a
record with a duplicate label. Leijen addresses this problem stating that the type system can
always issue a warning if a record with a fixed type contains duplicate labels, but does not
develop this idea. Our approach does not allow for duplicate labels and we implement a strict
notion of extensibility using kind restrictions.

6.1.7 Compilation

Ohori’s compilation method is based on the definition of an implementation calculus in which
records are represented as vectors whose elements are accessed by direct indexing based on a
total order � on the set of labels (e.g., the lexicographical ordering on the string representation
of labels) and of a compilation algorithm for translating terms from his original calculus to terms
of that calculus. The set of terms of the implementation calculus includes index variables (ranged
over by I) and natural numbers (ranged over by i). Given a total order � on the set of labels,
the index of a label li in a record type of the form {l1 : τ1, . . . , ln : τn} is i, and a record term of
the form {l1 = M1, . . . , ln = Mn} and the previous type is a vector whose ith element is the one
assigned to the label li. To account for polymorphic operations, index types idx(l, τ) are used to
type index values as follows. When τ is a record type, idx(l, τ) denotes the index of label l in
τ and | idx(l, τ) | is the index value denoted by idx(l, τ). When τ is a type variable α, idx(l, α)
denotes possible index values depending on the instantiations of α and | idx(l, α) | is undefined.
The set of types of the implementation calculus extends the set of types of the original calculus
with idx(l, τ1)⇒ τ2, which denotes functions that take an index valued denoted by idx(l, τ1) and
return a value of type τ2. The type system of the original calculus is also extended to include
index assignments that map index variables I to index types of the form idx(l, τ) and allow for
both typing and index judgements. Using these new constructions, Ohori’s strategy for compiling
polymorphic functions containing polymorphic record operations is to insert appropriate index
abstractions as needed. As an example, the following polymorphic type

∀α2 :: {{l1 : Bool, l2 : String}}.∀α3 :: {{l1 : l2}}.α2 → α3

is transformed to

∀α2 :: {{l1 : Bool, l2 : String}}.∀α3 :: {{l1 : α2}}.idx(l1, α2)⇒ idx(l2, α2)⇒ idx(l1, α3)⇒ α2 → α3

such that the order in which each idx(l, τ) appears for each τ follows the ordering implied by �.
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To prove the correctness of this compilation method, Ohori shows that the compilation
algorithm preserves the operational behaviour of the original polymorphic record calculus by
proving that the compilation algorithm preserves types, and that the compilation calculus has
the subject reduction property.

We believe that an efficient compilation algorithm can also be defined for the calculus
developed in this work because variables still range over complete record types and the negative
information added to kinds should not play any role in compilation. For these reasons, it should
be possible to extend the compilation method in [46] to our approach.

6.2 Languages for Event Processing

When it comes to processing flows of information, there are two main models leading the research
done in this area: the data stream processing model [6] and the complex event processing
model [43]. The data stream processing model consists on producing new data streams by looking
at streams of data coming from different sources, while the complex event processing model
consists on looking at sequences of events happening in order to filter and combine them to
produce new events.

In [20], several information processing systems were surveyed. This showed a gap between
data processing languages and event detection languages, and the need to define a minimal set
of language constructors to combine both features in the same language. We believe that EVL is
a good candidate to explore the gap between these two models.

To deal with event classification in a uniform way, Alves et. al. [2] defined a general term-
based language for events. In this language, events are represented as typed-terms built from a
user-defined signature, i.e., a particular set of typed function symbols that are specific to the
system modelled. With this approach it is possible to define general functions to implement
event typing and to compute event intervals, without needing to know the exact type of events.
A compound event [2] links a set of events that occur separately in the history, but should be
identified as a single event occurrence. For simplicity, in [2] compound events were assumed to
appear as a single event in history, leaving a more detailed and realistic treatment of compound
events for future work. The notion of compound or composite event is also a key feature in
CEP systems, which put great emphasis on the ability to detect complex patterns of incoming
streams of events and establish sequencing and ordering relations. Types were used in [2] not
only to ensure that terms representing events respect the type signature specific to the system
under study, but also to formally define the notion of event instantiation, associating specific
events to generic events through an implicit notion of subtyping, inspired by Ohori’s system of
polymorphic record types [46]. Because of the implicit subtyping rule for typing records, the
system defined in [2] allowed for type-checking of event-specification, but not for dealing with
most general types for event specifications. One of the main motivations behind the development
of EVL was precisely to facilitate the specification and processing of (compound) events.
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Following the complex event processing model, one of the key features is the ability to derive
complex events (composite) from lower-level events and several special purpose Event Query
Languages (EQLs) have been proposed for that [25]. One possible categorization of the multitude
of EQLs consists in grouping together languages with a similar “style” or “flavor” together. As
it turns out, in [25] it was found that most approaches for querying events fell into one of the
following five categories:

1. Languages based on composition operators (sometimes also called composite event algebras
or event pattern languages);

2. Data stream query languages (usually based on SQL);

3. Production rules;

4. Timed (finite) state machines;

5. Logic languages.

The first, the second and the fifth approaches were composed out of special purpose languages
that were specifically designed for specifying event queries. The third and forth approaches are
simply clever ways of using established technology to model event queries. That being said, it
was also found in [25] that many industry products actually follow approaches where several
languages of different flavors are supported or a single language combines aspects of several
flavors. As an example, the TESLA language [20] supports content-based event filtering and is
also able to establish temporal relations on events while providing a formal semantics based on
temporal logic. The main advantage of logic languages is their strong formal foundation, an
issue which is neglected by many languages of other styles [25]. In fact, the lack of a simple
denotational semantics is a common criticism of CEP query languages [5, 27, 55], with several
languages not guaranteeing important language features, such as orthogonality, as well as an
overlapping of definitions that make reasoning about these languages much harder. Recently,
a formal framework based on a Complex Event Logic was proposed [31], with the purpose of
“giving a rigorous and efficient framework to CEP”. The authors define well-formed and safe
formulas as syntactic restrictions that characterize semantic properties, and argue that only
well-formed formulas should be considered and that users should understand that all variables in
a formula must be correctly defined. This notion of well-formed formulas and correctly defined
variables is naturally guaranteed in a typed language like EVL. Therefore we believe that EVL
can also be used to provide formal semantics to CEP systems.

Our notion of events follows the approach of the Event Calculus, where events are seen as
action occurrences, or action happenings in a particular system and at a particular point in time.
This notion was initially introduced in [41] then later axiomatised in [44], and has been further
used in the context of dynamic access control systems [11] and in dynamic systems dealing with
obligations [30]. As in the case of [9], our flexible representation of events is capable of encoding
the representation of events in the Event Calculus. The higher-order capabilities of EVL allow
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us to reason about events and their effects in a particular system by permitting us to define
parameterised functions for dealing with the usual CEP techniques.

In the context of access control systems, the Obligation Specification Language defined in [35],
presents a language for events to monitor and reason about data usage requirements. It also
defines the refinesEv instance relation between events, which is based on a subset relation on
labels, as is the case for the instance relation in [3]. The instance relation in [2] was defined by
implicit subtyping on records but more generally using variable instantiation. In this work we
further generalise the notion of instance relation and define it formally using kinded instantiation.





Chapter 7

Final Remarks

In [2], a general typed language to deal with the notion of event in the context of access control
systems was defined. As a simplification, this event language did not deal with compound events
and a more detailed and realistic treatment of this type of events was left for future work.

We have presented two typed languages for dealing with events and have shown how they
can be used in the context of CEP and the specification of obligation policies. These languages
are both based on Ohori’s original ML-style polymorphic record calculus [46] mostly due to the
fact that some aspects of the event language developed in [2] were inspired by that type system.
Because of this, we were able to provide sound and complete type inference algorithms for both
languages and a call-by-value operational semantics for EVL that ensures type-soundness.

In this work, we have also shown that it is possible to define a type system based on kinded
quantification capable of capturing more powerful operations on records than the ones considered
by Ohori, in order to maintain an efficient compilation method. Although we do not deal with
compilation, we believe that an efficient compilation method can also be achieved for both our
languages.

In future extensions of EVL, we would also like to explore the use of pattern matching. Pattern
matching is a powerful mechanism for decomposing and processing data and its ability to detect
patterns is a key notion in most CEP systems. For this reason, we believe that the addition of
matching primitives to EVL would greatly improve its capabilities in the context of CEP.

We believe that most of the proofs presented in this work are easy to follow. With the
possible exception of a few that are very technical. One such proof is that of Theorem 2.4.5. We
find that some of the results presented in this work would greatly benefit from being validated
using a proof assistant like Agda.

In the near future, we would like to continue to develop this work by defining an efficient
compilation method for both our languages.
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Appendix A

Appendix

A.1 Complete proof of Theorem 2.4.5

Proof. We first show that if the algorithm returns a kinded substitution, then it is a most general
unifier of a given kinded set of equations.

Property 1 is composed out of the following sub-properties:

(1.1) K and K ∪ SK are well-formed kind assignments.

(1.2) E is well-formed under K.

(1.3) S is a well-formed substitution under K.

(1.4) dom(K) ∩ dom(SK) = ∅.

(1.5) dom(SK) = dom(S).

It is easily verified that each transformation rule preserves Property 1 on 4-tuples:

• Rule i):

(1.1) K is well-formed and SK is well-formed.

(1.2) Since E ∪ {(τ1, τ2)} is well-formed under K, then E is also well-formed under K.

(1.3) S is well-formed under K.

(1.4) dom(K) ∩ dom(SK) = ∅.

(1.5) dom(SK) = dom(S).

• Rule ii):

(1.1) Since K ∪ {(α,U)} is well-formed, we know that for all α′ ∈ dom(K ∪ {(α,U)}),
FTV(K ∪ {(α,U)}(α′)) ⊆ dom(K ∪ {(α,U)}). But then FTV(K(α′)) ∪ FTV(U) ⊆

99
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dom(K) ∪ {α} ⇐⇒ FTV(K(α′)) ⊆ dom(K) ∪ {α}, and α 6∈ FTV(τ). Therefore, α
will not appear in [τ/α](K) and, for all α′ ∈ dom([τ/α](K)), FTV([τ/α](K)(α′)) ⊆
dom(K) = dom([τ/α](K)). Since K ∪ {(α,U)} ∪ SK is well-formed, we know that
for all α′ ∈ dom(K ∪ {(α,U)} ∪ SK), FTV(K ∪ {(α,U)} ∪ SK(α′)) ⊆ dom(K ∪
{(α,U)} ∪ SK). But then FTV(K(α′))∪ FTV(U)∪ FTV(SK(α′)) ⊆ dom(K)∪ {α} ∪
dom(SK) ⇐⇒ FTV(K(α′)) ∪ FTV(SK(α′)) ⊆ dom(K) ∪ {α} ∪ dom(SK), and
α 6∈ FTV(τ). Therefore α will not appear in [τ/α](K) or [τ/α](SK) and, for all
α′ ∈ dom([τ/α](K) ∪ [τ/α](SK)), FTV([τ/α](K) ∪ [τ/α](SK))) ⊆ dom([τ/α](K) ∪
[τ/α](SK)). But then, for all α′ ∈ dom([τ/α](K) ∪ [τ/α](SK) ∪ {(α,U)}), we have
FTV([τ/α](K) ∪ [τ/α](SK) ∪ {(α,U)}(α′)) = FTV([τ/α](K) ∪ [τ/α](SK)(α′)) ⊆
dom(K) ∪ dom(SK) = dom([τ/α](K) ∪ [τ/α](SK)) ⊆ dom([τ/α](K) ∪ [τ/α](SK) ∪
{(α,U)}).

(1.2) Since E ∪ {(α, τ)} is well-formed under K ∪ {(α,U)}, we know that E is well-
formed under K ∪ {(α,U)}, that is, for all (τ1, τ2) ∈ E, FTV(τ1) ∪ FTV(τ2) ⊆
dom(K ∪{(α,U)}). But α 6∈ FTV(τ), which means that α will not appear in [τ/α](E)
and for all (τ1, τ2) ∈ [τ/α](E), FTV(τ1) ∪ FTV(τ2) ⊆ dom(K) = dom([τ/α](K)).

(1.3) Since S is well-formed under K ∪ {(α,U)}, we know that, for all α′ ∈ dom(S),
FTV(S(α′)) ⊆ dom(K ∪ {(α,U)}). But FTV(S(α)) ⊆ dom(K) ∪ {α} and α 6∈
FTV(τ). Therefore α will not appear in [τ/α](S) and, for all α′ ∈ dom([τ/α](S)),
FTV([τ/α](S)(α′)) ⊆ dom(K) = dom([τ/α](K)). Also, we know that τ is well-
formed under K, therefore FTV(τ) ⊆ dom(K) = dom([τ/α](K)). Thus, for all
α′ ∈ dom([τ/α](S) ∪ {(α, τ)}), FTV([τ/α](S) ∪ {(α, τ)}(α′)) ⊆ dom([τ/α](K)).

(1.4) dom(K ∪ {(α,U)}) ∩ dom(SK) = ∅ ⇐⇒ (dom(K) ∪ {α}) ∩ dom(SK) = ∅. But α ∈
FTV(τ), therefore α will not appear in [τ/α](K) or [τ/α](SK) and (dom([τ/α](K))∪
{α})∩dom([τ/α](SK)) = ∅ ⇐⇒ dom([τ/α](K))∩ (dom([τ/α](SK)∪{α})) = ∅ ⇐⇒
dom([τ/α](K)) ∩ dom([τ/α](SK) ∪ {(α,U)}) = ∅.

(1.5) dom(SK) = dom(S) ⇐⇒ dom([τ/α](SK)) = dom([τ/α](S)) ⇐⇒ dom([τ/α](SK))
∪ {α} = dom([τ/α](S)) ∪ {α} ⇐⇒ dom([τ/α](SK) ∪ {(α,U)}) = dom([τ/α](S) ∪
{(α, τ)}).

• Rule iii):

(1.1) Since K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})} is well-formed, we know that, for
all α ∈ dom(K ∪ {(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 || F r
2}})}), FTV(K ∪ {(α1, {{F l

1 ||
F r

1}}), (α2, {{F l
2 || F r

2}})}(α′)) ⊆ dom(K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}) and,
therefore, FTV(K(α′))∪FTV({{F l

1 || F r
1}})∪FTV({{F l

2 || F r
2}}) ⊆ dom(K)∪ {α1, α2}.

But then α1 will not appear in [α2/α1](K) and, for all α ∈ dom([α2/α1](K)),
FTV([α2/α1](K)(α)) ⊆ dom(K)∪{α2} = dom([α2/α1](K))∪{α2} = dom([α2/α1](K)
∪ {(α2, [α2/α1]({{F l

1 + F l
2 || F r

1 + F r
2}}))}. Also, α1 will not appear in [α2/α1]{{F l

1 |
| F r

1}} or [α2/α1]{{F l
2 || F r

2}} and FTV([α2/α1{{F l
1 || F r

1}}) ∪ FTV([α2/α1]{{F l
2 |

| F r
2}}) ⊆ dom(K) ∪ {α2} = dom([α2/α1](K) ∪ {(α2, [α2/α1]{{F l

1 + F l
2 || F r

1 +
F r

2}})}). But FTV([α2/α1]{{F l
1 || F r

1}}) ∪ FTV([α2/α1]{{F l
2 || F r

2}}), therefore, for
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all α ∈ dom([α2/α1](K) ∪ {(α2, [α2/α1]{{F l
1 + F l

2 || F r
1 + F r

2}})}), FTV([α2/α1](K) ∪
{(α2, [α2/α1]{{F l

1 +F l
2 || F r

1 +F r
2}})}(α)) ⊆ dom([α2/α1](K)∪{(α2, [α2/α1]{{F l

1 +F l
2 |

| F r
1 + F r

2}}}).
Since K ∪{(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 || F r
2}})}∪SK is well-formed, we know that, for

all α ∈ dom(K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})} ∪ SK), FTV(K ∪ {(α1, {{F l
1 |

| F r
1}}), (α2, {{F l

2 || F r
2}})} ∪ SK(α)) ⊆ dom(K ∪ {(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 |
| F r

2}})} ∪ SK) and, therefore, FTV(K(α)) ∪ FTV({{F l
1 || F r

1}}) ∪ FTV({{F l
2 ||

F r
2}}) ∪ FTV(SK(α)) ⊆ dom(K) ∪ {α1, α2} ∪ dom(SK). But α1 will not appear

in [α2/α1](K) or [α2/α1](SK) and, for all α ∈ dom([α2/α1](K) ∪ [α2/α1](SK)),
FTV([α2/α1](K) ∪ [α2/α1](SK)(α)) ⊆ dom(K ∪ SK) ∪ {α2} = dom([α2/α1](K) ∪
[α2/α1](SK)) ∪ {α2} = dom([α2/α1](K) ∪ [α2/α1](SK) ∪ {(α2, [α2/α1]{{F l

1 + F l
2 ||

F r
1 +F r

2}}}). But then, for all α ∈ dom([α2/α1](K)∪ [α2/α1](SK)∪{(α2, [α2/α1]{{F l
1 +

F l
2 || F r

1 + F r
2}})}), FTV([α2/α1](K) ∪ [α2/α1](SK) ∪ {(α2, [α2/α1]{{F l

1 + F l
2 || F r

1 +
F r

2}})}(α)) ⊆ dom([α2/α1](K)∪ [α2/α1](SK)∪ {(α2, [α2/α1]{{F l
1 + F l

2 || F r
1 + F r

2}})}).
Also, then, for all α ∈ dom([α2/α1](K) ∪ {(α2, [α2/α1]{{F l

1 + F l
2 || F r

1 + F r
2}}} ∪

[α2/α1](SK) ∪ {(α1, {{F l
1 || F r

1}}}), FTV([α2/α1](K) ∪ {(α2, [α2/α1]{{F l
1 + F l

2 || F r
1 +

F r
2}}}∪ [α2/α1](SK)∪{(α1, {{F l

1 || F r
1}})}(α)) ⊆ dom([α2/α1](K)∪{(α2, [α2/α1]{{F l

1 +
F l

2 || F r
1 + F r

2}}} ∪ [α2/α1](SK)) ∪ {α1} = dom([α2/α1](K) ∪ {(α2, [α2/α1]{{F l
1 + F l

2 ||
F r

1 + F r
2}})} ∪ [α2/α1](SK) ∪ {(α1, {{F l

1 || F r
1}}}).

(1.2) Since E ∪ {(α1, α2)} is well-formed under K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})},
we know that, for al (τ1, τ2) ∈ E, FTV(τ1) ∪ FTV(τ2) ⊆ dom(K ∪ {(α1, {{F l

1 |
| F r

1}}), (α2, {{F l
2 || F r

2}})}) = dom(K) ∪ {α1, α2}. But α1 will not appear in
[α2/α1](E), therefore, for all (τ1, τ2) ∈ [α2/α1](E), FTV(τ1) ∪ FTV(τ2) ⊆ dom(K) ∪
{α2} = dom([α2/α1](K)) ∪ {α2} = dom([α2/α1](K) ∪ {(α2, [α2/α1]{{F l

1 + F l
2 ||

F r
1 + F r

2}}}). Also, α1 will not appear in any type in [α2/α1]({(F l
1(l),F l

2(l)) |
l ∈ dom(F l

1) ∩ dom(F l
2)} ∪ {(F r

1 (l),F r
2 (l)) | l ∈ dom(F r

1 ) ∩ dom(F r
2 )}) and, for all

(τ1, τ2) ∈ [α2/α1]({(F l
1(l),F l

2(l)) | l ∈ dom(F l
1) ∩ dom(F l

2)} ∪ {(F r
1 (l),F r

2 (l)) | l ∈
dom(F r

1 ) ∩ dom(F r
2 )}), FTV(τ1) ∪ FTV(τ2) ⊆ dom(K) ∪ {α2} = dom([α2/α1](K)) ∪

{α2} = dom([α2/α1](K) ∪ {(α2, [α2/α1]{{F l
1 + F l

2 || F r
1 + F r

2}})}). Therefore, for all
(τ1, τ2) ∈ [α2/α1](E ∪ {(F l

1(l),F l
2(l)) | l ∈ dom(F l

1) ∩ dom(F l
2)} ∪ {(F r

1 (l),F r
2 (l)) | l ∈

dom(F r
1 )∩dom(F r

2 )}), FTV(τ1)∪FTV(τ2) ⊆ dom([α2/α1](K)∪{(α2, [α2/α1]{{F l
1+F l

2 |
| F r

1 + F r
2}})}).

(1.3) Since S is well-formed under K∪{}, we know that, for all α ∈ dom(S), FTV(S(α)) ⊆
dom(K ∪ {(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 || F r
2}})}) = dom(K) ∪ {α1, α2}. But α1

will not appear in [α2/α1](S) and, for all α ∈ dom([α2/α1](S)), FTV(S(α)) ⊆
dom(K) ∪ {α2} = dom([α2/α1](K)) ∪ {α2} = dom([α2/α1](K) ∪ {(α2, {{F l

1 + F l
2 |

| F r
1 + F r

2}})}). Also, FTV(α2) = {α2} ⊆ {α2} = dom({(α2, {{F l
1 + F l

2 || F r
1 +

F r
2}})}) ⊆ dom([α2/α1](K) ∪ {(α2, {{F l

1 + F l
2 || F r

1 + F r
2}})}), therefore, for all α ∈

dom([α2/α1](S)) ∪ {(α1, α2)}, FTV([α2/α1](S) ∪ {(α1, α2)}(α)) ⊆ dom([α2/α1](K) ∪
{(α2, {{F l

1 + F l
2 || F r

1 + F r
2}})}).

(1.4) dom(K∪{(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})})∩dom(SK) = ∅ ⇐⇒ (dom(K)∪{α1,
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α2})∩dom([α2/α1](SK)) = ∅ ⇐⇒ (dom([α2/α1](K))∪{α2})∩ (dom([α2/α1](SK))∪
{α1}) = ∅ ⇐⇒ dom([α2/α1](K) ∪ {(α2, [α2/α1]({{F l

1 + F l
2 || F r

1 + F r
2}})}) ∩

dom([α2/α1](SK) ∪ {(α1, α2)}) = ∅.

(1.5) dom(SK) = dom(S) ⇐⇒ dom([α2/α1](SK)) = dom([α2/α1](S)) ⇐⇒
dom([α2/α1](SK)) ∪ {α1} = dom([α2/α1](S)) ∪ {α1} ⇐⇒ dom([α2/α1](SK) ∪
{(α1, {{F l

1 || F r
1}})}) = dom([α2/α1](S) ∪ {(α1, α2)}).

• Rule iv):

(1.1) Since K ∪ {(α, {{F l
1 || F r

1}})} is well-formed, we know that, for all α′ ∈ dom(K ∪
{(α, {{F l

1 || F r
1}})}), FTV(K ∪ {(α, {{F l

1 || F r
1}})}(α′)) ⊆ dom(K ∪ {(α, {{F l

1 || F r
1}})})

and, therefore, FTV(K(α′)) ∪ FTV({{F l
1 || F r

1}}) ⊆ dom(K) ∪ {α}. But, since
α 6∈ FTV({F2}), α will not appear in [{F2}/α](K) and, for all α′ ∈ dom([{F2}/α](K)),
FTV([{F2}/α](K)(α′)) ⊆ dom(K) = dom([{F2}/α](K)).
Since K ∪ {(α, {{F l

1 || F r
1}})} ∪ SK is well-formed, we know that, for all α′ ∈

dom(K ∪{(α, {{F l
1 || F r

1}})}∪SK), FTV(K ∪{(α, {{F l
1 || F r

2}})}∪SK(α′)) ⊆ dom(K ∪
{(α, {{F l

1 || F r
1}}} ∪ SK) and, therefore, FTV(K ∪ {(α, {{F l

1 || F r
1}})} ∪ SK(α′)) ⊆

dom(K ∪{(α, {{F l
1 || F r

1}})}∪SK). Also, dom(K(α′))∪ dom({{F l
1 || F r

1}})∪ dom(α′) ⊆
dom(K)∪{α}∪dom(SK). But, since α 6∈ FTV({F2}), α will not appear in [{F2}/α](K)
or [{F2}/α](SK) and, for all α′ ∈ dom([{F2}/α]∪ [{F2}/α](SK)), FTV([{F2}/α](K)∪
[{F2}/α](SK)(α′)) ⊆ dom([{F2}/α](K) ∪ [{F2/α](SK)). Also, FTV({{F l

1 || F r
1}}) ⊆

dom(K)∪{α}∪dom(SK) = dom([{F2}/α](K))∪{α}∪dom([{F2/α}/α](SK)). There-
fore, for all α′ ∈ dom([{F2}/α](K) ∪ [{F2}/α](SK) ∪ {(α, {{F l

1 || F r
1}})}),

FTV([{F2/α}](K) ∪ [{F2}/α](SK) ∪ {(α, {{F l
1 || F r

1}})}(α′)) ⊆ dom([{F2}/α](K) ∪
[{F2}/α](SK) ∪ {(α, {{F l

1 || F r
1}}}).

(1.2) Since E ∪ {(α, {F2}} is well-formed under K ∪ {(α, {{F l
1 || F r

1}}}, we know that, for
all (τ1, τ2) ∈ E ∪ {(α, {F2})}, FTV(τ1) ∪ FTV(τ2) ⊆ dom(K ∪ {(α, {{F l

1 || F r
1}})}) =

dom(K) ∪ {α}. But, since α 6∈ FTV({F2}), α will not appear in [{F2}/α](E) and, for
all (τ1, τ2) ∈ [{F2}/α](E), FTV(τ1)∪FTV(τ2) ⊆ dom(K) = dom([{F2}/α](K)). Also,
since α 6∈ FTV({F2}), α will not appear in any type in [{F2}/α]({(F l

1(l),F r
2 (l)) | l ∈

dom(F l
1)}) and, for all (τ1, τ2) ∈ [{F2}/α]({(F l

1(l),F r
1 (l)) | l ∈ dom(F l

1)}), FTV(τ1) ∪
FTV(τ2) ⊆ dom(K) = dom([{F2}/α](K)).

(1.3) Since S is well-formed under K ∪ {(α, {{F l
1 || F r

1}})}, we know that, for all α′ ∈
dom(S), FTV(S(α′)) ⊆ dom(K ∪ {(α, {{F l

1 || F r
1}})}) ⊆ dom(K) ∪ {α}. Since

α 6∈ FTV({F2}), α will not appear in [{F2}/α](S) and, for all α′ ∈ dom([{F2}/α](S)),
FTV([{F2}/α](S)(α′)) ⊆ dom(K) = dom([{F2}/α](K)). Also, we know that {F2}
is well-formed under K ∪ {(α, {{F l

1 || F r
1}})}, therefore FTV({F2}) ⊆ dom(K ∪

{(α, {{F l
1 || F r

1}}}) = dom(K) ∪ {α}. But, α 6∈ dom([{F2}/α](S) ∪ {(α, {F2})}),
FTV([{F2}/α](S) ∪ {(α, {F2})}(α′)) ⊆ dom([{F2}/α](K)).

(1.4) dom(K ∪ {(α, {{F l
1 || F r

1}})}) ∩ dom(SK) = ∅ ⇐⇒ (dom(K) ∪ {α}) ∩ dom(SK) =
∅ ⇐⇒ (dom([{F2}/α](K))∪{α})∩dom([{F2}/α](SK)) = ∅ ⇐⇒ dom([{F2}/α](K))
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∩ (dom([{F2}/α](SK) ∪ {α})) = ∅ ⇐⇒ dom([{F2}/α](K)) ∩ (dom([{F2}/α](SK) ∪
{(α, {{F l

1 || F r
1}})})) = ∅.

(1.5) dom(SK) = dom(S) ⇐⇒ dom([{F2}/α](SK)) = dom([{F2}/α](S)) ⇐⇒
dom([{F2}/α](SK)) ∪ {α} = dom([{F2}/α](S)) ∪ {α} ⇐⇒ dom([{F2}/α](SK) ∪
{(α, {{F l

1 || F r
1}})}) = dom([{F2}/α](S) ∪ {(α, {F2})}).

• Rule v):

(1.1) K is well-formed and K ∪ SK is well-formed.

(1.2) Since E ∪ {({F1}, {F2})} is well-formed under K, we know that E is well-formed
under K. Since both {F1} and {F1} are well-formed under K, we know that, for all
(τ1, τ2) ∈ {(F1(l),F2(l)) | l ∈ dom(F1)}, FTV(τ1) ∪ FTV(τ2) ⊆ dom(K). But then,
E ∪ {(F1(l),F2(l)) | l ∈ dom(F1)} is well-formed under K.

(1.3) S is well-formed under K.

(1.4) dom(K) ∩ dom(SK) = ∅.

(1.5) dom(SK) = dom(S).

• Rule vi):

(1.1) K is well-formed and K ∪ SK is well-formed.

(1.2) Since E ∪ {(τ1
1 → τ2

1 , τ
1
2 → τ2

2 )} is well-formed under K, we know that E is well-
formed under K. Also, FTV(τ1

1 → τ2
1 ) ∪ FTV(τ1

2 → τ2
2 ) ⊆ dom(K) and, therefore,

FTV(τ1
1 )∪FTV(τ2

1 )∪FTV(τ1
2 )∪FTV(τ2

2 ) ⊆ dom(K). But, then FTV(τ1
1 )∪FTV(τ1

2 ) ⊆
dom(K) and FTV(τ2

1 )∪FTV(τ2
2 ) ⊆ dom(K). Therefore E ∪{(τ1

1 , τ
1
2 ), (τ2

1 , τ
2
2 )} is well-

formed under K.

(1.3) S is well-formed under K.

(1.4) dom(K) ∩ dom(SK) = ∅.

(1.5) dom(SK) = dom(S).

• Rule vii):

(1.1) Since K ∪ {(α, {{F l
1 || F r

1}}), (root(χ), {{F l
2 || F r

2}})} is well-formed, we know that,
for all α′ ∈ dom(K ∪ {(α, {{F l

1 || F r
1}}), (root(χ), {{F l

2 || F r
2}})}), FTV(K ∪ {(α, {{F l

1 |
| F r

1}}), (root(χ), {{F l
2 || F r

2}})}(α′)) ⊆ dom(K ∪ {(α, {{F l
1 || F r

1}}), (root(χ), {{F l
2 ||

F r
2}})}). Also, FTV(K(α′)) ∪ FTV({{F l

1 || F r
1}}) ∪ FTV({{F l

2 || F r
2}}) ⊆ dom(K) ∪

{α, root(χ)}. But, since α 6∈ FTV(χ), α will not appear in [χ/α](K) and, for all
α′ ∈ dom([χ/α](K)), FTV([χ/α](K)(α′)) ⊆ dom(K) ∪ {root(χ)} = dom([χ/α](K) ∪
{(root(χ), [χ/α]({{F l

2 + (F l
1 − (F r

2 + (F l
2 − Fc(|χ|)))) || F r

2 + (F r
1 − Fc(|χ|))}})))}). Also,

FTV({{F l
2 +(F l

1−(F r
2 +(F l

2−Fc(|χ|)))) || F r
2 +(F r

1−Fc(|χ|))}})) ⊆ dom(K)∪{α, root(χ)}.
Since α will not appear in [χ/α]({{F l

2 + (F l
1 − (F r

2 + (F l
2 − Fc(|χ|)))) || F r

2 + (F r
1 −

Fc(|χ|))}})), we have that FTV([χ/α]({{F l
2 + (F l

1 − (F r
2 + (F l

2 − Fc(|χ|)))) || F r
2 + (F r

1 −
Fc(|χ|))}}))) ⊆ dom(K) ∪ {root(χ)} = dom([χ/α](K) ∪ {(root(χ), [χ/α]({{F l

2 + (F l
1 −

(F r
2 + (F l

2 − Fc(|χ|)))) || F r
2 + (F r

1 − Fc(|χ|))}})))}). Thus, for all α′ ∈ dom([χ/α](K) ∪
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{(root(χ), [χ/α]({{F l
2 + (F l

1 − (F r
2 + (F l

2 − Fc(|χ|)))) || F r
2 + (F r

1 − Fc(|χ|))}})))}),
FTV([χ/α](K) ∪ {(root(χ), [χ/α]({{F l

2 + (F l
1 − (F r

2 + (F l
2 − Fc(|χ|)))) || F r

2 + (F r
1 −

Fc(|χ|))}})))}(α′)) ⊆ dom([χ/α](K)∪{(root(χ), [χ/α]({{F l
2 +(F l

1−(F r
2 +(F l

2−Fc(|χ|)))) |
| F r

2 + (F r
1 − Fc(|χ|))}})))}).

Since K ∪ {(α, {{F1 || F r
1}}), (root(χ), {{F l

2 || F r
2}})} ∪ SK is well-formed, we know

that, for all α′ ∈ dom(K ∪ {(α, {{F l
1 || F r

1}}), (root(χ), {{F l
2 || F r

2}})} ∪ SK), FTV(K ∪
{(α, {{F l

1 || F r
1}}), (root(χ), {{F l

2 || F r
2}})}) ⊆ dom(K∪{(α, {{F l

1 || F r
1}}), (root(χ), {{F l

2 |
| F r

2}})} ∪ SK). Also, FTV(K(α′)) ∪ FTV({{F l
1 || F r

1}}) ∪ FTV({{F l
2 || F r

2}}) ∪
FTV(SK(α′)) ⊆ dom(K) ∪ {α, root(χ)} ∪ dom(SK). But, since α 6∈ FTV(χ), α will
not appear in [χ/α](K) or [χ/α](SK) and, for all α′ ∈ dom([χ/α](K) ∪ [χ/α](SK)),
FTV([χ/α](K)∪ [χ/α](SK)(α′)) ⊆ dom(K)∪{root(χ)}∪dom(SK) = dom([χ/α](K)∪
{(root(χ), [χ/α]({{F l

2+(F l
1−(F r

2 +(F l
2−Fc(|χ|)))) || F r

2 +(F r
1−Fc(|χ|))}})))}∪[χ/α](SK)).

Also, FTV({{F l
1 || F r

1}}) ⊆ dom(K) ∪ {α, root(χ)} ∪ dom(SK) = dom([χ/α](K)) ∪
{α, root(χ)} ∪ dom([χ/α](SK)) and dom([χ/α](K) ∪ {(root(χ), [χ/α]({{F l

2 + (F l
1 −

(F r
2 + (F l

2 − Fc(|χ|)))) || F r
2 + (F r

1 − Fc(|χ|))}}))} ∪ [χ/α](SK)) ⊆ dom([χ/α](SK)) ∪
{α, root(χ)}∪[χ/α](SK). Therefore, for all α′ ∈ dom([χ/α](K)∪{(root(χ), [χ/α]({{F l

2+
(F l

1 − (F r
2 + (F l

2 − Fc(|χ|)))) || F r
2 + (F r

1 − Fc(|χ|))}})))} ∪ [χ/α](SK) ∪ {(α, {{F l
1 |

| F r
1}}}), FTV([χ/α](K) ∪ {(root(χ), [χ/α]({{F l

2 + (F l
1 − (F r

2 + (F l
2 − Fc(|χ|)))) ||

F r
2 + (F r

1 − Fc(|χ|))}}))} ∪ [χ/α](SK) ∪ {(α, {{F l
1 || F r

1}}}(α′)) ⊆ dom([χ/α](K) ∪
{(root(χ), [χ/α]({{F l

2+(F l
1−(F r

2 +(F l
2−Fc(|χ|)))) || F r

2 +(F r
1−Fc(|χ|))}})))}∪[χ/α](SK)∪

{(α, {{F l
1 || F r

1}})}).

(1.2) Since E∪{(α, χ)} is well-formed under K ∪{(α, {{F l
1 || F r

1}}}, we know that E is well-
formed under K ∪ {(α, {{F l

1 || F r
1}}}. But α 6∈ FTV(χ), therefore α will not appear in

[χ/α](E) and, for all (τ1, τ2) ∈ [χ/α](E), FTV(τ1)∪FTV(τ2) ⊆ dom(K)∪{root(χ)} =
dom([χ/α](K)) ∪ {root(χ)}. Also, since α 6∈ FTV(χ), α will not appear in any
of the types in [χ/α]({(F l

1(l), (F r
2 + (F l

2 − Fc(χ)))(l)) | l ∈ dom(F l
1) ∩ dom(F r

2 +
(F l

2 − Fc(χ)))} ∪ {(F r
1 (l),Fc(χ))(l)) | l ∈ dom(F r

1 ) ∩ dom(Fc(χ)})), therefore, for all
(τ1, τ2) ∈ [χ/α]({(F l

1(l), (F r
2 + (F l

2 − Fc(χ)))(l)) | l ∈ dom(F l
1) ∩ dom(F r

2 + (F l
2 −

Fc(χ)))} ∪ {(F r
1 (l),Fc(χ))(l)) | l ∈ dom(F r

1 ) ∩ dom(Fc(χ)})), FTV(τ1) ∪ FTV(τ2) ⊆
dom(K) ∪ {root(χ)} = dom([χ/α](K)) ∪ {root(χ)}.

(1.3) Since S is well-formed underK∪{(α, {{F l
1 || F r

1}})}, we know that, for all α′ ∈ dom(S),
FTV(S(α′)) ⊆ dom(K ∪ {(α, {{F l

1 || F r
1}})} ∪ {(root(χ), {{F l

2 || F r
2}})}) = dom(K) ∪

{α, root(χ)}. But, since α 6∈ FTV(χ), then α will not appear in [χ/α](S) and, for all
α′ ∈ dom([χ/α](S)), FTV([χ/α](S)(α′)) ⊆ dom(K) ∪ {root(χ)} = dom([χ/α](K) ∪
{(root(χ), [χ/α]({{F l

2 + (F l
1 − (F r

2 + (F l
2 − Fc(|χ|)))) || F r

2 + (F r
1 − Fc(|χ|))}}))}). Also,

χ is well-formed under K ∪ {(α, {{F l
1 || F r

1}}), (root(χ), {{F l
2 || F r

2}})}, which means
that FTV(χ) ⊆ dom((K ∪ {(α, {{F l

1 || F r
1}}), (root(χ), {{F l

2 || F r
2}})}). But, α 6∈

FTV(χ), therefore FTV(χ) ⊆ dom(K ∪ {(root(χ), {{F l
2 || F r

2}})}) = dom([χ/α](K) ∪
{(root(χ), [χ/α]({{F l

2 + (F l
1− (F r

2 + (F l
2−Fc(|χ|)))) || F r

2 + (F r
1 −Fc(|χ|))}}))}). Thus, for

all α′ ∈ dom([χ/α](S) ∪ {(α, χ)}), FTV([χ/α](S) ∪ {(α, χ)}(α′)) ⊆ dom([χ/α](K) ∪
{(root(χ), [χ/α]({{F l

2 + (F l
1 − (F r

2 + (F l
2 − Fc(|χ|)))) || F r

2 + (F r
1 − Fc(|χ|))}}))}).
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(1.4) dom(K ∪ {(α, {{F l
1 || F r

1}}), (root(χ), {{F l
2 || F r

2}})}) ∩ dom(SK) = ∅ ⇐⇒ (dom(K) ∪
{α, root(χ)})∩ dom(SK) = ∅ ⇐⇒ (dom([χ/α](K))∪{α, root(χ)})∩ dom([χ/α](SK))
= ∅ ⇐⇒ (dom([χ/α](K)) ∪ {root(χ)}) ∩ (dom([χ/α](SK) ∩ {α})) = ∅ ⇐⇒
dom([χ/α](K) ∪ {(root(χ), [χ/α]({{F l

2 + (F l
1 − (F r

2 + (F l
2 − Fc(|χ|)))) || F r

2 + (F r
1 −

Fc(|χ|))}}))}) ∩ dom([χ/α](SK) ∪ {(α, {{F l
1 || F r

1}}}) = ∅.

(1.5) dom(SK) = dom(S) ⇐⇒ dom([χ/α](SK)) = dom([χ/α](S)) ⇐⇒ dom([χ/α](SK))
∪ {α} = dom([χ/α](S)) ∪ {α} ⇐⇒ dom([χ/α](SK) ∪ {(α, {{F l

1 || F r
1}}}) =

dom([χ/α](S) ∪ {(α, χ)}).

• Rule viii):

(1.1) K is well-formed and K ∪ SK is well-formed.

(1.2) Since E ∪ {(α1 ±1
1 {l11 : τ1

1 } · · · ±1
i {l1i : τ1

i } · · · ±1
n {l1n : τ1

n}, α2 ±2
1 {l21 : τ2

1 } · · · ±2
j {l2j :

τ2
j } · · · ±2

m {l2m : τ2
m})} is well-formed under K, we know that E is well-formed

under K. Also, FTV(α1 ±1
1 {l11 : τ1

1 } · · · ±1
i {l1i : τ1

i } · · · ±1
n {l1n : τ1

n}) ⊆ dom(K)
and FTV(α2 ±2

1 {l21 : τ2
1 } · · · ±2

j {l2j : τ2
j } · · · ±2

m {l2m : τ2
m}) ⊆ dom(K). But, then

FTV(α1 ±1
1 {l11 : τ1

1 } · · · ±1
i−1 {l1i−1 : τ1

i−1} ±1
i+1 {l1i+1 : τ1

i+1} · · · ±1
n {l1n : τ1

n}) ⊆
FTV(α1 ±1

1 {l11 : τ1
1 } · · · ±1

i {l1i : τ1
i } · · · ±1

n {l1n : τ1
n}) ⊆ dom(K) and FTV(α2 ±2

1 {l21 :
τ2

1 } · · · ±2
j−1 {l2j−1 : τ2

j−1} ±2
j+1 {l2j+1 : τ2

j+1} · · · ±2
m {l2m : τ2

m}) ⊆ FTV(α2 ±2
1 {l21 :

τ2
1 } · · · ±2

j {l2j : τ2
j } · · · ±2

m {l2m : τ2
m}) ⊆ dom(K).

(1.3) S is well-formed under K.

(1.4) dom(K) ∩ dom(SK) = ∅.

(1.5) dom(SK) = dom(S).

• Rule ix):

(1.1) Since K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})} is well-formed, we know that
I(K) ∪ {(α, {{F l

1 + F l
2 || F r

1 + F r
2}})} is well-formed and that, for all α′ ∈ dom(K ∪

{(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}), FTV(K ∪ {K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 |

| F r
2}})}(α′)) ⊆ dom(K ∪ {(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 || F r
2}})}) and, therefore,

FTV(K(α′)) ∪ FTV({{F l
1 || F r

1}}) ∪ FTV({{F l
2 || F r

2}}) ⊆ dom(K) ∪ {α1, α2}. But,
since α is fresh, α1 6∈ FTV(α2±2

1 {l21 : τ2
1 } · · ·±2

m {l2m : τ2
m})∪FTV(τ1

1 )∪· · ·∪FTV(τ1
n)

and α2 6∈ FTV(α1 ±1
1 {l11 : τ1

1 } · · · ±1
n {l1n : τ1

n}) ∪ · · · ∪ FTV(τ2
1 ) · · ·FTV(τ2

m), both
α1 and α2 will not appear in I(K) and, for all α′ ∈ dom(I(K)), FTV(I(K)(α′)) ⊆
dom(K) = dom(I(K)). Also, FTV({{F l

1 + F l
2 || F r

1 + F r
2}}) ⊆ FTV({{F l

1 || F r
1}}) ∪

FTV({{F l
2 || F r

2}}) ⊆ dom(K) ∪ {α1, α2}. But, again, α1 and α2 will not appear in
I({{F l

1 + F l
2 || F r

1 + F r
2}}) and FTV(I({{F l

1 + F l
2 || F r

1 + F r
2}})) ⊆ dom(K) ∪ {α} =

dom(I(K)) ∪ {α}. Since dom(I(K)) ⊆ dom(I(K)) ∪ {α}, we have that, for all
α′ ∈ dom(I(K) ∪ {(α, I({{F l

1 + F l
2 || F r

1 + F r
2}})}), FTV(I(K) ∪ {(α, I({{F l

1 + F l
2 ||

F r
1 + F r

2}})}(α′)) ⊆ dom(I(K) ∪ {(α, I({{F l
1 + F l

2 || F r
1 + F r

2}})}).
Since K ∪{(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 || F r
2}})}∪SK is well-formed, we know that, for

all α′ ∈ dom(K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})} ∪ SK), FTV(K ∪ {(α1, {{F l
1 |

| F r
1}}), (α2, {{F l

2 || F r
2}})} ∪ SK(α′)) ⊆ dom(K ∪ {(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 |
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| F r
2}})} ∪ SK) and, therefore, FTV(K(α′)) ∪ FTV({{F l

1 || F r
1}}) ∪ FTV({{F l

2 |
| F r

2}}) ∪ FTV(SK(α′)) ⊆ dom(K) ∪ {α1, α2} ∪ dom(SK). But, since α is fresh,
α1 6∈ FTV(α2 ±2

1 {l21 : τ2
1 } · · · ±2

m {l2m : τ2
m}) ∪ FTV(τ1

1 ) ∪ · · · ∪ FTV(τ1
n) and α2 6∈

FTV(α1±1
1{l11 : τ1

1 } · · ·±1
n{l1n : τ1

n})∪· · ·∪FTV(τ2
1 ) · · ·FTV(τ2

m) and α2 will not appear
in I(K) or I(SK) and, for all α′ ∈ dom(I(K) ∪ I(SK)), FTV(I(K) ∪ I(SK)(α′)) ⊆
dom(K)∪dom(SK)∪{α} = dom(I(K)∪I(SK)∪{(α, S({{F l

1+F l
2 || F r

1 +F r
2}})}). Also,

FTV({{F l
1 + F l

2 || F r
1 + F r

2}}) ⊆ FTV({{F l
1 || F r

1}}) ∪ FTV({{F l
2 || F r

2}}) ⊆ dom(K) ∪
dom(SK)∪{α1, α2} and α1 and α2 will not appear in I({{F l

1+F l
2 || F r

1 +F r
2}}), therefore

FTV(I({{F l
1 + F l

2 || F r
1 + F r

2}})) ⊆ dom(K) ∪ dom(SK) ∪ {α} = dom(I(K) ∪ I(SK) ∪
{(α, I({{F l

1 + F l
2 || F r

1 + F r
2}})}). Finally, since dom(I(K)∪I(SK)∪{(α, I({{F l

1 + F l
2 |

| F r
1 + F r

2}})}) ⊆ dom(I(K)∪ I(SK)∪ {(α, I({{F l
1 + F l

2 || F r
1 + F r

2}})})∪ {α1, α2}, we
have that, for all α′ ∈ dom(I(K)∪I(SK)∪{(α, I({{F l

1 +F l
2 || F r

1 +F r
2}})}∪{(α1, {{F l

1 |
| F r

1}}} ∪ {(α2, {{F l
2 || F r

2}})}), FTV(I(K)∪I(SK)∪ {(α, I({{F l
1 + F l

2 || F r
1 + F r

2}})} ∪
{(α1, {{F l

1 || F r
1}}}∪{(α2, {{F l

2 || F r
2}})}(α′)) ⊆ dom(I(K)∪I(SK)∪{(α, I({{F l

1 +F l
2 |

| F r
1 + F r

2}})} ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}).

(1.2) We know that E ∪{(α1±1
1 {l11 : τ1

1 } · · · ±1
n {l1n : τ1

n}, α2±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2

m})}
is well-formed under K ∪ {(α1, {{F l

1 || F r
1}}), (α2, {{F l || F r}})}. But then, since α is

fresh, α1 6∈ FTV(α2 ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2

m}) ∪ FTV(τ1
1 ) ∪ · · · ∪ FTV(τ1

n) and
α2 6∈ FTV(α1±1

1 {l11 : τ1
1 } · · ·±1

n {l1n : τ1
n})∪· · ·∪FTV(τ2

1 ) · · ·FTV(τ2
m) and α2 will not

appear in any type in I(E), therefore, for all (τ1, τ2) ∈ I(E), FTV(τ1) ∪ FTV(τ2) ⊆
dom(K) ∪ {α} = dom(I(K) ∪ {(α, I({{F l

1 + F l
2 || F r

1 + F r
2}})}). Also, for all (τ1, τ2) ∈

{(F l
1(l),F l

2(l)) | l ∈ dom(F l
1) ∩ dom(F l

2)}, FTV(τ1) ∪ FTV(τ2) ⊆ dom(K) ∪ {α1, α2},
but α1 and α2 will not appear in I({(F l

1(l),F l
2(l)) | l ∈ dom(F l

1)∩dom(F l
2)}), therefore,

for all (τ1, τ2) ∈ I({(F l
1(l),F l

2(l)) | l ∈ dom(F l
1) ∩ dom(F l

2)}), FTV(τ1) ∪ FTV(τ2) ⊆
dom(K) ∪ {α} = dom(I(K) ∪ {(α, I({{F l

1 + F l
2 || F r

1 + F r
2}}))}).

(1.3) Since S is well-formed under K ∪{(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}, we know that,
for all α′ ∈ dom(S), FTV(S(α′)) ⊆ dom(K ∪ {(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 || F r
2}})}) =

dom(K) ∪ {α1, α2}. But, since α is fresh, α1 6∈ FTV(α2 ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m :

τ2
m})∪FTV(τ1

1 )∪ · · · ∪FTV(τ1
n) and α2 6∈ FTV(α1±1

1 {l11 : τ1
1 } · · ·±1

n {l1n : τ1
n})∪ · · · ∪

FTV(τ2
1 ) · · ·FTV(τ2

m) and α2 will not appear in I(S), therefore, for all α′ ∈ dom(I(S)),
FTV(I(S)(α′)) ⊆ dom(K)∪{α} = dom(I(K)∪{(α, I({{F l

1 + F l
2 || F r

1 + F r
2}}))}. Also,

since α1 6∈ FTV(α2 ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2

m}) ∪ FTV(τ1
1 ) ∪ · · · ∪ FTV(τ1

n) and
α2 6∈ FTV(α1 ±1

1 {l11 : τ1
1 } · · · ±1

n {l1n : τ1
n}) ∪ · · · ∪ FTV(τ2

1 ) · · ·FTV(τ2
m), we have that

FTV(α±2
1{l21 : τ2

1 } · · ·±2
m{l2m : τ2

m}) ⊆ dom(K)∪{α} = dom(I(K)∪{(α, I({{F l
1 +F l

2 |
| F r

1 +F r
2}}))}) and FTV(α±2

1 {l21 : τ2
1 }±2

m {l2m : τ2
m}) ⊆ dom(K)∪{α} = dom(I(K)∪

{(α, I({{F l
1 + F l

1 || F r
1 + F r

2}}))}). Therefore, for all α′ ∈ dom(I(S) ∪ {(α1, α±2
1 {l21 :

τ2
1 } · · · ±2

m {l2m : τ2
m}), (α2, α±1

1 {l11 : τ1
1 } · · · ±1

n {l1n : τ1
n})}).

(1.4) dom(K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}) ∩ dom(SK) = ∅ ⇐⇒ (dom(K) ∪
{α1, α2}) ∩ dom(SK) = ∅ α fresh⇐⇒ (dom(K) ∪ {α1, α2, α}) ∩ dom(SK) = ∅ ⇐⇒
(dom(K) ∪ {α}) ∩ (dom(SK) ∪ {α1, α2}) = ∅ ⇐⇒ dom(I(K) ∪ {(α, I({{F l

1 + F l
2 ||

F r
1 + F r

2}}))}) ∩ dom(I(SK) ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}) = ∅.
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(1.5) dom(SK) = dom(S) ⇐⇒ dom(SK)∪{α1, α2} = dom(S)∪{α1, α2} ⇐⇒ dom(SK∪
{(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 || F r
2}})}) = dom(S ∪ {(α1, α ±2

1 {l21 : τ2
1 } · · · ±2

m {l2m :
τ2
m}), (α2, α±1

1 {l11 : τ1
1 } · · · ±1

n {l1n : τ1
n})}).

We now state two more properties that are also preserved by each transformation rule:

• Property 2 : For any kinded substitution (K0, S0), if (K0, S0) respects K and S0 satisfies
E ∪ S then (K0, S0) respect SK.

• Property 3 : The set of unifiers of (K ∪ SK,E ∪ S).

We can verify that these two properties are preserved by each transformation rule knowing that
Property 1 holds for the 4-tuple.

Preservation of Property 2 :

• Rule i): Assume that (K0, S0) respects K. Assume that τ1 ≡χ τ2 and S0 satisfies E ∪
{(τ1, τ2)} ∪ S. Then, (K0, S0) respects SK.

• Rule ii): If we assume that (K0, S0) respects [τ/α](K), then we know that, for all
α′ ∈ dom([τ/α](K)), K0 `χ S0([τ/α](K)(α′)). If we assume that S0 satisfies [τ/α](E) ∪
[τ/α](S) ∪ {(α, τ)}, then we know that, for all (τ1, τ2) ∈ [τ/α](E) ∪ [τ/α](S) ∪ {(α, τ)},
S0(τ1) ≡χ S0(τ2), that is:

– for all (τ1, τ2) ∈ [τ/α](E), S0(τ1) = S0(τ2);

– for all (τ1, τ2) ∈ [τ/α](S), S0(τ1) ≡χ S0(τ2);

– S0(α) ≡χ S0(τ).

But then, since S0(α) ≡χ S0(τ), we have that S0(α) ≡χ S0 ◦ [τ/α](α) ≡χ S0(τ). Also,
since α 6∈ FTV(τ), α will not appear in [α/α](K) and dom(K) = dom([τ/α](K)), which
means that, for all α′ ∈ dom(K ∪ {(α,U)}), K0 `χ S0(α′) :: S0(K(α′)) and, therefore,
K0 `χ S0 ◦ [τ/α](α′) :: S0 ◦ [τ/α](K(α′)), that is:

– K0 `χ S0([τ/α](α′)) :: S0([τ/α](K)(α′)), if α′ 6= α;

– K0 `χ S0([τ/α](α)) :: S0([τ/α](K)(α)) ⇐⇒ K0 `χ S0(α) :: U , if α′ = α - which is
valid since τ is well-formed under K, S0(α) ≡χ S0(τ), and S0(τ) is well-formed under
K0.

Also, since S0 = S0 ◦ [τ/α], then, for all (τ1, τ2) ∈ E ∪ {(α, τ)} ∪ S, S0(τ1) ≡χ S0(τ2), since:

– if, for all (τ1, τ2) ∈ [τ/α](E), S0(τ1) ≡χ S0(τ2), then, for all (τ1, τ2) ∈ E, S0 ◦
[τ/α](τ1) ≡χ S0 ◦ [τ/α](τ2);

– if, for all (τ1, τ2) ∈ [τ/α](S), S0(τ1) ≡χ S0(τ2), then, for all (τ1, τ2) ∈ E, S0 ◦
[τ/α](τ1) ≡χ S0 ◦ [τ/α](τ2);
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– S0(α) ≡χ S0 ◦ [τ/α](α) ≡χ S0 ◦ [τ/α](τ) ≡χ S0(τ).

That is, (K0, S0) respects K ∪ {(α,U)} and S0 satisfies E ∪ {(α,U)} ∪ S. But then,
(K0, S0) respects SK, that is, for all α′ ∈ dom(SK), K0 `χ S0(α′) :: S0(SK(α′)). But,
since α 6∈ FTV(τ), α will not appear in [τ/α](SK), therefore, for all α′ ∈ dom([τ/α](SK)),
K0 `χ S0(α′) :: S0(SK(α′)). Also, K0 `χ S0(α) :: U , therefore, for all α′ ∈ dom([τ/α](SK)∪
{(α,U)}), K `χ S0(α′) :: S0(SK(α′)), which means that (K0, S0) respects [τ/α](SK) ∪
{(α, τ)}.

• Rule iii): If we assume that (K0, S0) respects [α2/α1](K) ∪ {(α2, [α2/α1]({{F l
1 + F l

2 ||
F r

1 + F r
2}}))}, then we know that, for all α′ ∈ dom([α2/α1](K) ∪ {(α2, [α2/α1]({{F l

1 + F l
2 ||

F r
1 + F r

2}})}(α′)), that is:

– K0 `χ S0(α′) :: S0([α2/α1](K)(α′));

– K0 `χ S0(α2) :: S0([α2/α1]({{F l
1 + F l

1 || F r
1 + F r

2}})).

If we assume that S0 satisfies [α2/α1](E ∪ {(F l
1(l),F l

2(l)) | l ∈ dom(F l
1) ∩ dom(F l

2) ∪
{(F r

1 (l),F r
2 (l)) | l ∈ dom(F r

1 ) ∩ dom(F r
2 )}) ∪ [α2/α1](S) ∪ {(α1, α2)}, then we know that,

for all (τ1, τ2) ∈ [α2/α1](E ∪ {(F l
1(l),F l

2(l)) | l ∈ dom(F l
1) ∩ dom(F l

2) ∪ {(F r
1 (l),F r

2 (l)) | l ∈
dom(F r

1 ) ∩ dom(F r
2 )}) ∪ [α2/α1](S) ∪ {(α1, α2)}, S0(τ1) ≡χ S0(τ2), that is:

– for all (τ1, τ2) ∈ [α2/α1](E), S0(τ1) ≡χ S0(τ2);

– for all (τ1, τ2) ∈ [α2/α1]({(F l
1(l),F l

2(l)) | l ∈ dom(F l
1) ∩ dom(F l

2)}), S0(τ1) ≡χ S0(τ2);

– for all (τ1, τ2) ∈ [α2/α1]({(F r
1 (l),F r

2 (l)) | l ∈ dom(F r
1 ) ∩ dom(F r

2 )}), S0(τ1) ≡χ S0(τ2);

– for all (τ1, τ2) ∈ [α2/α1](S), S0(τ1) ≡χ S0(τ2);

– S0(α1) ≡χ S0(α2).

But then, since S0(α1) ≡χ S0(α2), we have that S0 ◦ [α2/α1](α1) ≡χ S0(α2), therefore,
S0 = S0 ◦ [α2/α1]. Also, α1 will not appear in [α2/α1](K) and dom(K) = dom([α2/α1](K)),
which means that, for all α ∈ dom(K ∪ {(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 || F r
2}})}), K0 `χ

S0(K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}(α)), since:

– K0 `χ S0 ◦ [α2/α1](α) :: S0 ◦ [α2/α1](K(α)), if α 6∈ {α1, α2};

– KS2 ◦ [α2/α1](α1) :: S0 ◦ [α2/α1]({{F l
1 || F r

1}}), if α = α1;

– KS2 ◦ [α2/α1](α2) :: S0 ◦ [α2/α1]({{F l
2 || F r

2}}), if α = α2.

The two last points are valid since dom(F l
1) ∩ dom(F r) = ∅ = dom(F r

1 ) ∩ dom(F l
2) and

K0 `χ S0 ◦ [α2/α1](α2) :: S0 ◦ [α2/α1]({{F l
1 + F l

2 || F r
1 + F r

2}}). Also, since S0 = S0 ◦ [α2/α1],
then, for all (τ1, τ2) ∈ E ∪ {(α1, α2)} ∪ S, S0(τ1) ≡χ S0(τ2), since:

– if, for all (τ1, τ2) ∈ [α2/α1](E), S0(τ1) ≡χ S0(τ2), then, for all (τ1, τ2) ∈ E, S0 ◦
[α2/α1](τ1) ≡χ S0 ◦ [α2/α1](τ2);

– if, for all (τ1, τ2) ∈ [α2/α1](S), S0(τ1) ≡χ S0(τ2), then, for all (τ1, τ2) ∈ S, S0 ◦
[α2/α1](τ1) ≡χ S0 ◦ [α2/α1](τ2);
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– S0(α1) ≡χ S0 ◦ [α2/α1](α1) ≡χ S0(α2).

That is, (K0, S0) respects K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})} and S0 satisfies E ∪
{(α1, α2)}∪S. But, then (K0, S0) respects SK, that is, for all α ∈ dom(SK), K `χ S0(α) ::
S0(SK(α)). But α1 will not appear in [α2/α1](SK) and dom(SK) = dom([α2/α1](SK)),
therefore, for all α ∈ dom([α2/α1](SK)), K0 `χ S0(α) :: S0([α2/α1](SK)). Also, we
know that K `χ S0(α1) :: S0([α2/α1]({{F l

1 || F r
2}})) ⇐⇒ K `χ S0 ◦ [α2/α1](α1) ::

S0([α2/α1]({{F l
1 || F r

2}})) ⇐⇒ K `χ S0(α2) :: S0([α2/α1]({{F l
1 || F r

2}})), which means that
(K0, S0) respects [α2/α1](SK) ∪ {(α1, {{F l

1 || F r
1}})}.

• Rule iv): If we assume that (K0, S0) respects [{F2}/α](K), then we know that, for all α′ ∈
dom([{F2}/α](K)), K0 `χ S0(α′) :: S0([{F2}/α](K)(α′)). If we assume that S0 satisfies
[{F2}/α](E∪{(F l

1(l),F2(l)) | l ∈ dom(F l
1)})∪ [{F2}/α](S)∪{(α, {F2})}, then we know that,

for all (τ1, τ2) ∈ [{F2}/α](E ∪ {(F l
1(l),F2(l)) | l ∈ dom(F l

1)) ∪ [{F2}/α](S) ∪ {(α, {F2})},
S0(τ1) ≡χ S0(τ2), that is:

– for all (τ1, τ2) ∈ [{F2}/α](E), S0(τ1) ≡χ S0(τ2);

– for all (τ1, τ2) ∈ [{F2}/α]({(F l
1(l),F2(l)) | l ∈ dom(F l

1)}), S0(τ1) ≡χ S0(τ2);

– S0(α) ≡χ S0({F2}).

But then, since S0(α) ≡χ S0({F2}), and α 6∈ FTV({F2}), we have that S0 ◦ [{F2}/α](α) ≡χ
S0({F2}) ≡χ S0◦[{F2}/α]({F2}), that is, that S0 = S0◦[{F2}/α]. Also, α will not appear in
[{F2}/α](K) and dom([{F2}/α](K)) = dom(K), therefore, for all α′ ∈ dom(K ∪ {(α, {{F l

1 |
| F r

1}})}), K0 `χ S0(α′) :: S0(K(α′)), since:

– K `χ S0 ◦ [{F2}/α](α′) :: S0 ◦ [{F2}/α](K(α′)) ⇐⇒ K0 `χ S0(α′) ::
S0([{F2}/α](K)(α′)), if α′ 6= α;

– K0 `χ S0 ◦ [{F2}/α](α) :: S0 ◦ [{F2}/α]({{F l
1 || F r

1}}) ⇐⇒ K0 `χ S0({F2}) ::
S0 ◦ [{F2}/α]({{F l

1 || F r
1}}), if α′ = α.

And the last point is valid since S0 satisfies [{F2/α]({(F l
1(l),F2(l)) | l ∈ dom(F l

1)}),
dom(F l

1) ⊆ dom(F2), and dom(F r
1 ) ∩ dom(F2) = ∅.

Also, since S0 = S0 ◦ [{F2}/α], for all (τ1, τ2) ∈ E ∪ {(α, {F2})} ∪ S, S0(τ1) ≡χ S0(τ2),
since:

– if, for all (τ1, τ2) ∈ [{F2}/α](E), S0(τ1) ≡χ S0(τ2), then, for all (τ1, τ2) ∈ E, S0 ◦
[{F2}/α](τ1) ≡χ S0 ◦ [{F2}/α](τ2);

– if, for all (τ1, τ2) ∈ [{F2}/α](S), S0(τ1) ≡χ S0(τ2), then, for all (τ1, τ2) ∈ S, S0 ◦
[{F2}/α](τ1) ≡χ S0 ◦ [{F2}/α](τ2);

– S0(α) ≡χ S ◦ [{F2}/α](α) ≡χ S0({F2}).

That is, (K0, S0) respects K ∪ {(α, {{F l
1 || F r

1}})} and S0 satisfies E ∪ {(α, {F2})} ∪ S. But,
then (K0, S0) respects SK, that is, for all α′ ∈ dom(SK), K0 `χ S0(α′) :: S0(SK(α′)). But,
α will not appear in [{F2}/α](SK) and dom(SK) = dom([{F2}/α](SK)), therefore, for all



110 Appendix A. Appendix

α′ ∈ dom([{F2}/α](SK)), K0 `χ S0(α′) :: S0([{F2}/α](SK)(α′)). Also, we know thatK0 `χ
S0(α) :: S0([{F2}/α]({{F l

1 || F r
1}})) ⇐⇒ K0 `χ S0 ◦ [{F2}/α](α) :: S0([{F2}/α]({{F l

1 |
| F r

1}})) ⇐⇒ K0 `χ S0({F2}) :: S0([{F2}/α]({{F l
1 || F r

1}})), therefore, (K0, S0) respects
[{F2}/α](SK) ∪ {(α, {{F l

1 || F r
1}})}.

• Rule v): Assume that (K0, S0) respects K. If we assume that S0 satisfies E∪{(F1(l),F2(l)) |
l ∈ dom(F1)}∪S, then we know that, for all (τ1, τ2) ∈ E∪{(F1(l),F2(l)) | l ∈ dom(F1)}∪S,
S0(τ1) ≡χ S0(τ2), that is:

– for all (τ1, τ2) ∈ E, S0(τ1) ≡χ S0(τ2);

– for all (τ1, τ2) ∈ {(F1(l),F2(l)) | l ∈ dom(F1)}.

But, then S0 satisfies E. Also, since S0 satisfies {(F1(l),F2(l)) | l ∈ dom(F1)} and
dom(F1) = dom(F2), we have that S0 satisfies {({F1}, {F2})}. This means that S0 satisfies
E ∪ {({F1}, {F2})}. Therefore, (K0, S0) respects SK.

• Rule vi): Assume that (K0, S0) respects K. If we assume that S0 satisfies E∪{(τ1
1 , τ

1
2 ), (τ2

1 ,

τ2
2 )} ∪ S, then we know that:

– S0 satisfies E;

– S0 satisfies S;

– S0 satisfies {(τ1
1 → τ2

1 , τ
1
2 → τ2

2 )}.

Therefore, (K0, S0) satisfies SK.

• Rule vii): If we assume that (K0, S0) respects [χ/α](K) ∪ {(root(χ), [χ/α]({{F l
2 || F r

2}}),
then we know that, for all α′ ∈ dom([χ/α](K) ∪ {(root(χ), {{F l

2 || F r
2}})}), K0 `χ S0(α′) ::

S0([χ/α](K) ∪ {(root(χ), {{F l
2 || F r

2}})}, that is:

– K0 `χ S0(α′) :: S0([χ/α](K)(α′)), if α′ = root(χ);

– K0 `χ S0(root(χ)) :: S0([χ/α]({{F l
2 || F r

2}})), if α′ = root(χ).

If we assume that S0 satisfies [χ/α]({(F l
1(l), (F r

2 +(F l
2−Fc(χ)))(l)) | l ∈ dom(F l

1)∩dom(F r
2 +

(F l
2−Fc(χ)))}∪{(F r

1 (l),Fc(χ)(l)) | l ∈ dom(F r
1 )∩dom(Fc(χ))})∪ [χ/α](S)∪{(α, χ)}, then we

know that, for all (τ1, τ2) ∈ [χ/α]({(F l
1(l), (F r

2 + (F l
2 − Fc(χ)))(l)) | l ∈ dom(F l

1)∩ dom(F r
2 +

(F l
2 − Fc(χ)))} ∪ {(F r

1 (l),Fc(χ)(l)) | l ∈ dom(F r
1 ) ∩ dom(Fc(χ))}) ∪ [χ/α](S) ∪ {(α, χ)},

S0(τ1) ≡χ S0(τ2), that is:

– for all (τ1, τ2) ∈ [χ/α](E), S0(τ1) ≡χ S0(τ2);

– for all (τ1, τ2) ∈ [χ/α]({(F l
1(l), (F r

2 + (F l
2 −Fc(χ)))(l)) | l ∈ dom(F l

1)∩ dom(F r
2 + (F l

2 −
Fc(χ))))}), S0(τ1) ≡χ S0(τ2);

– for all (τ1, τ2) ∈ [χ/α]({(F r
1 (l),Fc(χ)(l)) | l ∈ dom(F r

1 ) ∩ dom(Fc(χ))}), S0(τ1) ≡χ
S0(τ2);

– for all (τ1, τ2) ∈ [χ/α](S), S0(τ1) ≡χ S0(τ2);

– S0(α) ≡χ S0(χ).
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But, then, since S0(α) ≡χ S0(χ) and α 6∈ FTV(χ), we have that S0 ◦ [χ/α](α) ≡χ
S0(χ) ≡χ S0 ◦ [χ/α](χ). Also, α will not appear in [χ/α](K) and dom([χ/α](K)) =
dom(K), therefore, for all α′ ∈ dom(K ∪ {(α, {{F l

1 || F r
1}})} ∪ {(root(χ), {{F l

2 || F r
2}})}),

K0 `χ S0(α′) :: S0(K ∪ {(α, {{F l
1 || F r

1}}), (root(χ), {{F l
2 || F r

2}})}(α′)), that is:

– K0 `χ S0(α′) :: S0(K(α′)) ⇐⇒ K0 `χ S0 ◦ [χ/α](α′) :: S0 ◦ [χ/α](K(α′)), if
α′ ∈ {α, root(χ)};

– K0 `χ S0 ◦ [χ/α](α) :: S0 ◦ [χ/α]({{F l
1 || F r

1}}) ⇐⇒ K0 `χ S0 ◦ χ :: S0 ◦ [χ/α]({{F l
1 ||

F r
1}}), if α′ = α;

– K0 `χ S0 ◦ [χ/α](root(χ)) :: S0 ◦ [χ/α]({{F l
2 || F r

2}}) ⇐⇒ K0 `χ S0(root(χ)) ::
S0 ◦ [χ/α]({{F l

2 || F r
2}}), if α′ = root(χ).

The last two points are valid since dom(F l
1) ∩ dom(Fc(χ)) = ∅, dom(F r

1 ) ∩ dom(F r
2 + (F l

2 −
Fc(χ))) = ∅, and K0 `χ S0(root(χ)) :: S0([χ/α]({{F l

1 + F l
2 || F r

1 + F r
2}})), if α′ = root(χ).

Also, since S0 = S0◦ [χ/α], we have that, for all (τ1, τ2) ∈ E∪{(α, χ)}∪S, S0(τ1) ≡χ S0(τ2),
that is:

– if, for all (τ1, τ2) ∈ [χ/α](E), S0(τ1) ≡χ S0(τ2), then, for all (τ1, τ2) ∈ E, S0 ◦
[χ/α](τ1) ≡χ S0 ◦ [χ/α](τ2);

– S0(α) ≡χ S0 ◦ [χ/α](α) ≡χ S0(χ);

– if, for all (τ1, τ2) ∈ [χ/α](S), S0(τ1) ≡χ S0(τ2), then, for all (τ1, τ2) ∈ S, S0 ◦
[χ/α](τ1) = S0 ◦ [χ/α](τ2).

That is, (K0, S0) respects K ∪ {(α, {{F l
1 || F r

1}}), (root(χ), {{F l
2 || F r

2}})} and S0 satisfies
E ∪ {(α, χ)} ∪ S. But, then (K0, S0) respects SK, that is, for all α′ ∈ dom(SK), K0 `χ
S0(α′) :: S0(SK(α′)). But, since α 6∈ FTV(χ), then α will not appear in [χ/α](SK) and
dom([χ/α](SK)) = dom(SK), therefore, for all α′ ∈ dom([χ/α](SK) ∪ {(α, {{F l

1 || F r}})}),
K0 `χ S0(α′) :: S0([χ/α](SK) ∪ {(α, {{F l

1 || F r
1}})}(α′)), since we know that K0 `χ S0(α) ::

S0({{F l
1 || F r

1}}) ⇐⇒ K0 `χ S0 ◦ [χ/α](α) :: S0 ◦ [χ/α]({{F l
1 || F r

1}}) ⇐⇒ K0 `χ S0χ ::
S0 ◦ [χ/α]({{F l

1 || F r
1}}). Therefore, (K0, S0) respects [χ/α](SK) ∪ {(α, {{F l

1 || F r
1}}}.

• Rule viii): Assume (K0, S0) respects K. If we assume that S0 satisfies E ∪{(α1
i , τ

2
j ), (α1±1

1
{l11 : τ1

1 } · · ·±1
i−1{l1i−1 : τ1

i−1}±1
i+1{l1i+1 : τ1

i+1} · · ·±1
n{l1n : τ1

n}, α2±2
1{l21 : τ2

1 } · · ·±2
j−1{l2j−1 :

τ2
j−1} ±2

j+1 {l2j+1 : τ2
j+1} · · · ±2

m {l2m : τ2
m})} ∪ S, then we know that:

– S0 satisfies E;

– S0 satisfies S;

– S0 satisfies E∪{(α1±1
1{l11 : τ1

1 } · · ·±1
i {l1i : τ1

i } · · ·±1
n{l1n : τ1

n}, α2±2
1{l21 : τ2

1 } · · ·±2
j {l2j :

τ2
j } · · · ±2

m {l2m : τ2
m})}.

Therefore, S0 satisfies E∪{(α1±1
1 {l11 : τ1

1 } · · ·±1
i−1 {l1i−1 : τ1

i−1}±1
i+1 {l1i+1 : τ1

i+1} · · ·±1
n {l1n :

τ1
n}, α2 ±2

1 {l21 : τ2
1 } · · · ±2

j−1 {l2j−1 : τ2
j−1} ±2

j+1 {l2j+1 : τ2
j+1} · · · ±2

m {l2m : τ2
m})} ∪ S and

(K0, S0) respects SK.
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• Rule ix): If we assume that (K0, S0) respects I(K) ∪ {(α, I({{F l
1 + F l

2 || F r
1 + F r

2}}))},
then, for all α′ ∈ dom(I(K) ∪ {(α, I({{F l

1 + F l
2 || F r

1 + F r
2}}))}), K0 `χ S0(α′) :: S0(I(K) ∪

{(α, I({{F l
1 + F l

2 || F r
1 + F r

2}}))}(α′)), that is:

– K0 `χ S0(α′) :: S0(I(K)(α′)), if α′ = α;

– K0 `χ S0(α) :: S0(I({{F l
1 + F l

2 || F r
1 + F r

2}})).

If we assume that S0 satisfies, I(E ∪ {(F l
1(l),F l

2(l)) | l ∈ dom(F l
1) ∩ dom(F l

2)} ∪ {(F r
1 (l),

F r
2 (l)) | l ∈ dom(F r

1 )∩dom(F r
2 )})∪I(S)∪{(α1, α±2

1{l21 : τ2
1 } · · ·±2

m{l2m : τ2
m}), (α2, α±1

1{l11 :
τ1

1 } · · · ±1
n {l1n : τ1

n})}, that is:

– for all (τ1, τ2) ∈ I(E), S0(τ1) ≡χ S0(τ2);

– for all (τ1, τ2) ∈ I({(F l
1(l),F l

2(l)) | l ∈ dom(F l
1) ∩ dom(F l

2)}), S0(τ1) ≡χ S0(τ2);

– for all (τ1, τ2) ∈ I(S), S0(τ1) ≡χ S0(τ2);

– S0(α1) ≡χ S0(α±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2

m});

– S0(α2) ≡χ S0(α±1
1 {l11 : τ1

1 } · · · ±1
n {l1n : τ1

n}).

But then, since S0(α1) ≡χ S0(α ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2

m}), S0(α2) ≡χ S0(α ±1
1 {l11 :

τ1
1 } · · · ±1

n {l1n : τ1
n}), α1 6∈ FTV(α±2

1 {l21 : τ2
1 } · · · ±2

m {l2m : τ2
m}), and α2 6∈ FTV(α±1

1 {l11 :
τ1

1 } · · · ±1
n {l1n : τ1

n}), we have that S0 ◦ I(α1) ≡χ S0(α ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2

m}) ≡χ
S0 ◦ I(α ±2

1 {l21 : τ2
1 } · · · ±2

m {l2m : τ2
m}), and S0 ◦ I(α2) ≡χ S0(α ±1

1 {l11 : τ1
1 } · · · ±1

n {l1n :
τ1
n}) ≡χ S0 ◦I(α±1

1 {l11 : τ1
1 } · · ·±1

n {l1n : τ1
n}). Also, both α1 and α2 will not appear in I(K)

and dom(I(K)) = dom(K), therefore, for all α′ ∈ dom(K ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 ||

F r
2}})}), K0 `χ S0(α′) :: S0(K ∪ {(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 || F r
2}})}(α′)), since:

– K0 `χ S0(α′) :: S0(K(α′)) ⇐⇒ K0 `χ S0 ◦ I(α′) :: S0(I(K)(α′)), if α′ 6∈ {α1, α2};

– K0 `χ S0(α1) :: S0({{F l
1 || F r

1}}) ⇐⇒ K0 `χ S0(Six(α ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m :

τ2
m}))S0(I({{F l

1 || F r
1}}));

– K0 `χ S0(α2) :: S0({{F l
2 || F r

2}}) ⇐⇒ K0 `χ S0(I(α ±1
1 {l11 : τ1

1 } · · · ±1
n {l1n :

τ1
n}))S0(I({{F l

2 || F r
2}})).

And the two last points are valid, since dom(F l
1) ∩ dom(F r

2 ) = ∅, dom(F r
1 ) ∩ dom(F l

2) = ∅,
and S0(α) :: S0(I({{F l

1 + F l
2 || F r

1 + F r
2}})). Also, since S0 = S0 ◦ I, we have that, for

all (τ1, τ2) ∈ E ∪ {(α1 ±1
1 {l11 : τ1

1 } · · · ±1
n {l1n : τ1

n}, α2 ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2

m})} ∪ S,
S0(τ1) = S0(τ2), since:

– if, for all (τ1, τ2) ∈ I(E), S0(τ1) ≡χ S0(τ2), then, for all (τ1, τ2) ∈ E, S0 ◦ I(τ1) ≡χ
S0 ◦ I(τ2);

– if, for all (τ1, τ2) ∈ I(S), S0(τ1) ≡χ S0(τ2), then, for all (τ1, τ2) ∈ S, S0 ◦ I(τ1) ≡χ
S0 ◦ I(τ2);

– S0(α1 ±1
1 {l11 : τ1

1 } · · · ±1
n {l1n : τ1

n}) ≡χ S0 ◦ I(α1 ±1
1 {l11 : τ1

1 } · · · ±1
n {l1n : τ1

n}) ≡χ
S0(α ±2

1 {l21 : τ2
1 } · · · ±2

m {l2m : τ2
m} ±1

1 {l11 : τ1
1 } · · · ±1

n {l1n : τ1
n}) ≡χ S0 ◦ I(α2 ±2

1 {l21 :
τ2

1 } · · · ±2
m {l2m : τ2

m}) ≡χ S0(α2 ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2

m}).



A.1. Complete proof of Theorem 2.4.5 113

This means that (K0, S0) respects K∪{(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}, and S0 satisfies
E∪{(α1±1

1{l11 : τ1
1 } · · ·±1

n{l1n : τ1
n}, α2±2

1{l21 : τ2
1 } · · ·±2

m{l2m : τ2
m})}∪S. Therefore (K0, S0)

respects SK. But, α1 and α2 will not appear in I(SK) and dom(I(SK)) = dom(SK),
therefore, for all α′ ∈ dom(I(SK)), K0 `χ S0(α′) :: S0(I(SK)). Also, we know that:

– K0 `χ S0(α1) :: S0({{F l
1 || F r

1}}) ⇐⇒ K0 `χ S0 ◦ I(α1) :: S0(I({{F l
1 || F r

1}})) ⇐⇒
K0 `χ S0(α±2

1 {l21 : τ2
1 } · · · ±2

m {l2m : τ2
m}) :: S0(I({{F l

1 || F r
1}}));

– K0 `χ S0(α2) :: S0({{F l
2 || F r

2}}) ⇐⇒ K0 `χ S0 ◦ I(α2) :: S0(I({{F l
2 || F r

2}})) ⇐⇒
K0 `χ S0(α±1

1 {l11 : τ1
1 } · · · ±1

n {l1n : τ1
n}) :: S0(I({{F l

2 || F r
2}})).

Therefore, for all α′ ∈ dom(I(SK) ∪ {(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}), K0 `χ S0(α′) ::
S0(I(SK) ∪ {(α1, {{F l

1 || F r
1}}), (α2, {{F l

2 || F r
2}})}(α′)), that is, (K0, S0) respects I(SK) ∪

{(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}.

We only show that the set of unifiers of (K ∪ SK,E ∪ S) is preserved by the transformation
rules from left to right, but similar arguments can be used to show that it is also preserved by
the transformation rules from right to left.

Preservation of Property 3 :

• Rule i): Let (K0, S0) be a kinded substitution that respects K ∪ SK and such that S0

satisfies E ∪ {(τ1, τ2)} ∪ S, if τ1 ≡χ τ2. Then S0 satisfies E ∪ S.

• Rule ii): Let (K0, S0) be a kinded substitution that respects K ∪ {(α,U)} ∪ SK and such
that S0 satisfies E ∪ {(α, τ)} ∪ S. Since α 6∈ FTV(τ), dom(K) = dom([τ/α](K)) and
dom(SK) = dom([τ/α](SK)), therefore, (K0, S0) respects [τ/α](K) ∪ [τ/α](SK) ∪ {(α,U)}.
Also, since S0(α) ≡χ S0(τ), then S0 = S0 ◦ [τ/α], therefore S0 also satisfies [τ/α](E) ∪
[τ/α](S) ∪ {(α, τ)}.

• Rule iii): Let (K0, S0) be a kinded substitution that respects K ∪ {(α1, {{F l
1 || F r

1}}), (α2,

{{F l
2 || F r

2}})} ∪ SK and such that S0 satisfies E ∪ {(α1, α2)} ∪ S. But, dom(K) =
dom([α2/α1](K)) and dom(SK) = dom([α2/α1](SK)), therefore (K0, S0) respects
[α2/α1](SK) ∪ [α2/α1](SK). Also, since S0(α1) ≡χ S0(α2), then S0 = S0 ◦ [α2/α1], and:

– K0 `χ S0(α1) :: S0({{F l
1 || F r

1}}) ⇐⇒ K0 `χ S0(α1) :: S0 ◦ [α2/α1]({{F l
1 || F r

1}});

– K0 `χ S0(α2) :: S0({{F l
2 || F r

2}}) ⇐⇒ K0 `χ S0(α2) :: S0 ◦ [α2/α1]({{F l
2 || F r}}).

But thenK0 `χ S0(α2) :: S0◦[α2/α1]({{F l
1+F l

2 || F r
1 +F r

2}}) and S0 satisfies [α2/α1]({(F l
1(l),

F l
2(l)) | l ∈ dom(F l

1)∩dom(F l
2)}∪{(F r

1 (l),F r
2 (l)) | l ∈ dom(F r

1 )∩dom(F r
2 )}, since dom(F l

1)∩
dom(F r

2 ) = ∅, and dom(F r
1 ) ∩ dom(F l

2) = ∅. Therefore (K0, S0) respects [α2/α1](K) ∪
[α2/α1](SK)∪{(α1, {{F l

1 || F r
1}})}. Also, S0 satisfies [α2/α1](E), [α2/α1](S), and {(α1, α2)},

therefore, S0 satisfies [α2/α1](E∪{(F l
1(l),F l

2(l)) | l ∈ dom(F l
1)∩dom(F l

2)}∪{(F r
1 (l),F r

2 (l)) |
l ∈ dom(F r

1 ) ∩ dom(F r
2 )}) ∪ [α2/α1](S) ∪ {(α1, α2)}.
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• Rule iv): Let (K0, S0) be a kinded substitution that respects K ∪ {(α, {{F l
1 || F r

1}})} ∪ SK
and such that S0 satisfies E ∪ {(α, {F2})} ∪ S. Since α 6∈ FTV({F2}), we have that
dom(K) = dom([{F2}/α](K)) and that dom(SK) = dom([{F2}/α](SK)), therefore (K0, S0)
respects [{F2}/α](K) ∪ [{F2}/α](SK) ∪ {(α, {{F l

1 || F r
1}})}. Also, since S0(α) ≡χ S({F2}),

then S0 = S0 ◦ [{F2}/α] and S0 satisfies [{F2}/α](E), [{F2}α](S), and {(α, {F2})}. Finally,
we know that K0 `χ S0(α) :: S0({{F l

1 || F r
1}}) ⇐⇒ K0 `χ S0 ◦ [{F2}/α](α) :: S0 ◦

[{F2}/α]({{F l
1 || F r

1}}) ⇐⇒ K0 `χ S0({F2}) :: S0([{F2}/α]({{F l
1 || F r

1}})), therefore, S0

satisfies [{F2}/α]({(F l
1(l),F r

1 (l)) | l ∈ dom(F l
1)}, since dom(F l

1) ⊆ dom(F2) and dom(F r
1 ) ∩

dom(F2) = ∅. This means that (K0, S0) respects [{F2}/α](K)∪ [{F2}/α](SK)∪ {(α, {{F l
1 ||

F r
1}})} and S0 satisfies [{F2}/α](E) ∪ [{F2}/α](S) ∪ {(α, {F2})}.

• Rule v): Let (K0, S0) be a kinded substitution that respects K ∪ SK and such that S0

satisfies E∪{({F1}, {F2})}∪S. Since S0({F1}) ≡χ S0({F2}) and dom({F1}) = dom({F2}),
then S0 satisfies {(F1(l),F2(l)) | l ∈ dom(F1)}, therefore S0 satisfies E ∪ {(F1(l),F2(l)) |
l ∈ dom(F1)} ∪ S.

• Rule vi): Let (K0, S0) be a kinded substitution that respects K ∪ SK and such that S0

satisfies E ∪ {(τ1
1 → τ2

1 , τ
1
2 → τ2

2 )} ∪ S. Since S0 satisfies {(τ1
1 → τ2

1 , τ
1
2 → τ2

2 )}, then it
also satisfies {(τ1

1 , τ
1
2 ), (τ2

1 , τ
2
2 )}, therefore S0 satisfies E ∪ {(τ1

1 → τ2
1 , τ

1
2 → τ2

2 )} ∪ S.

• Rule vii): Let (K0, S0) be a kinded substitution that respectsK∪{(α, {{F l
1 || F r

1}}), (root(χ),
{{F l

2 || F r
2}})} ∪ SK and such that S0 satisfies E ∪ {(α, χ)} ∪ S. Since α 6∈ FTV(χ), we

have that dom(K) = dom([χ/α](K)), dom(SK) = dom([χ/α](SK)), therefore (K0, S0)
respects [χ/α](K) ∪ [χ/α](SK) ∪ {(α, {{F l

1 || F r
1}})}. Also, since S0(α) ≡χ S0(χ), then

S0 = S0 ◦ [χ/α], and:

– K0 `χ S0(α) :: S0({{F l
1 || F r

1}}) ⇐⇒ K0 `χ S0 ◦ [χ/α](α) :: S0 ◦ [χ/α]({{F l
1 ||

F r
1}}) ⇐⇒ K0 `χ S0(χ) :: S0([χ/α]({{F l

1 || F r
1}}));

– K0 `χ S0(root(χ)) :: S0({{F l
2 || F r

2}}) ⇐⇒ K0 `χ S0(root(χ)) :: S0([χ/α]({{F l
2 ||

F r
2}})).

But then, S0 satisfies [χ/α]({(F l
1(l), (F r

2 + (F l
2 − Fc(χ)))(l)) | l ∈ dom(F l

1) ∩ dom(F r
2 +

(F l
2 − Fc(χ)))} ∪ {(F r

1 (l),Fc(χ)(l)) | l ∈ dom(F r
1 ) ∩ dom(Fc(χ))}) and K0 `χ S0(root(χ)) ::

S0([χ/α]({{F l
2+(F l

1−(F r
2 +(F2−Fc(χ)))) || F r

2 +(F r
1−Fc(χ))}}), since dom(F l

1)∩dom(Fc(χ)) =
∅ and dom(F r

1 ) ∩ dom(F r + (F l
2 − Fc(χ))) = ∅. Finally, since α 6∈ FTV(χ), then α will

not appear in [χ/α](E) or [χ/α](S), therefore S0 satisfies [χ/α](E) ∪ [χ/α](S) ∪ {(α, χ)}.
But then, (K0, S0) respects [χ/α](K) ∪ {(root(χ), [χ/α]({{F l

2 + (F l
1 − (F r

2 + (F l
2 − Fc(χ)))) |

| F r
2 + (F r

1 − Fc(χ))}}))} ∪ [χ/α](SK) ∪ {(α, {{F l
1 || F r

1}})} and S0 satisfies [χ/α](E ∪
{(F l

1(l), (F r
2 + (F l

2−Fc(χ)))(l)) | l ∈ dom(F l
1)∩ dom(F r

2 + (F l
2−Fc(χ)))}∪{(F r

1 (l),Fc(χ)(l)) |
l ∈ dom(F r

1 ) ∩ dom(Fc(χ))}) ∪ [χ/α](S) ∪ {(α, χ)}.

• Rule viii): Let (K0, S0) be a kinded substitution that respects K ∪ SK and such that S0

satisfies E ∪ {(α1 ±1
1 {l11 : τ1

1 } · · · ±1
i {l1i : τ1

i } · · · ±1
n {l1n : τ1

n}, α2 ±2
1 {l21 : τ2

1 } · · · ±2
j {l2j :

τ2
j } · · · ±2

m {l2m : τ2
m})} ∪ S. Since S0 satisfies {(α1 ±1

1 {l11 : τ1
1 } · · · ±1

i {l1i : τ1
i } · · · ±1

n {l1n :
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τ1
n}, α2±2

1{l21 : τ2
1 } · · ·±2

j{l2j : τ2
j } · · ·±2

m{l2m : τ2
m})}, then it also satisfies {(τ1

i , τ
2
j ), (α1±1

1{l11 :
τ1

1 } · · · ±1
i−1 {l1i−1 : τ1

i−1} ±1
i+1 {l1i+1 : τ1

i+1} · · · ±1
n {l1n : τ1

n}, α2 ±2
1 {l21 : τ2

1 } · · · ±2
j−1 {l2j−1 :

τ2
j−1} ±2

j+1 {l2j+1 : τ2
j+1} · · · ±2

m {l2m : τ2
m})}, since (±1

i = ±2
j ∧ l2i = l2j ), ∀i < k ≤ n : l1k 6= l1i ,

and ∀j < r ≤ m : l2r 6= l2j . Therefore, S0 satisfies E∪{(τ1
i , τ

2
j ), (α1±1

1{l11 : τ1
1 } · · ·±1

i−1{l1i−1 :
τ1
i−1} ±1

i+1 {l1i+1 : τ1
i+1} · · · ±1

n {l1n : τ1
n}, α2 ±2

1 {l21 : τ2
1 } · · · ±2

j−1 {l2j−1 : τ2
j−1} ±2

j+1 {l2j+1 :
τ2
j+1} · · · ±2

m {l2m : τ2
m})} ∪ S.

• Rule ix): Let (K0, S0) be a kinded substitution that respects K ∪ {(α1, {{F l
1 || F r

1}}), (α2,

{{F l
2 || F r

2}})}∪SK and such that S0 satisfies E∪{(α1±1
1 {l11 : τ1

1 } · · ·±1
n {l1n : τ1

n}, α2±2
1 {l21 :

τ2
1 } · · · ±2

m {l2m : τ2})} ∪ S. Since α1 6∈ FTV(α2 ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2}) and

α2 6∈ FTV(α1 ±1
1 {l11 : τ1

1 } · · · ±1
n {l1n : τ1

n}, α2 ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2}), we have that

dom(K) = dom(I(K)), dom(SK) = dom(I(SK)) and (K0, S0) respects I(K) ∪ I(SK) ∪
{(α1, {{F1 || F r

1}}), (α2, {{F l
2 || F r

2}})}. Also, since α1 6∈ FTV(α2±2
1{l21 : τ2

1 } · · ·±2
m{l2m : τ2}),

α2 6∈ FTV(α1 ±1
1 {l11 : τ1

1 } · · · ±1
n {l1n : τ1

n}), α fresh, and S0(α1 ±1
1 {l11 : τ1

1 } · · · ±1
n {l1n :

τ1
n}) ≡χ S0(α2 ±2

1 {l21 : τ2
1 } · · · ±2

m {l2m : τ2}), then S0 = S0 ◦ I, and:

– K0 `χ S0(α1) :: S0({{F l
1 || F r

1}}) ⇐⇒ K0 `χ S0 ◦ I(α1) :: S0 ◦ I({{F l
1 || F r

1}}) ⇐⇒
K0 `χ S0(α ±2

1 {l21 : τ2
1 } · · · ±2

m {l2m : τ2} ±1
1 {l11 : τ1

1 } · · · ±1
n {l1n : τ1

n}) :: S0(I({{F l
1 ||

F r
1}}));

– K0 `χ S0(α2) :: S0({{F l
2 || F r

2}}) ⇐⇒ K0 `χ S0 ◦ I(α2) :: S0 ◦ I({{F l
2 || F r

2}}) ⇐⇒
K0 `χ S0(α ±1

1 {l11 : τ1
1 } · · · ±1

n {l1n : τ1
n} ±2

1 {l21 : τ2
1 } · · · ±2

m {l2m : τ2}) :: S0(I({{F l
2 ||

F r
2}})).

Note that, since α ±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2} ±1

1 {l11 : τ1
1 } · · · ±1

n {l1n : τ1
n} ≡χ α ±1

1 {l11 :
τ1

1 } · · ·±1
n{l1n : τ1

n}±2
1{l21 : τ2

1 } · · ·±2
m{l2m : τ2}, then S0(α±2

1{l21 : τ2
1 } · · ·±2

m{l2m : τ2}±1
1{l11 :

τ1
1 } · · · ±1

n {l1n : τ1
n}) ≡χ S0(α±1

1 {l11 : τ1
1 } · · · ±1

n {l1n : τ1
n}±2

1 {l21 : τ2
1 } · · · ±2

m {l2m : τ2}). But
then, S0 satisfies I({(F l

1(l),F l
2(l)) | l ∈ dom(F l

1)∩dom(F l
2)}∪{(F r

1 (l),F r
2 (l)) | l ∈ dom(F r

1 )∩
dom(F r

2 )}) and K0 `χ S0(α) :: S0(I({{F l
1 + F l

2 || F r
1 + F r

2}})), since dom(F l
1)∩ dom(F r

2 ) = ∅
and dom(F r

1 ) ∩ dom(F l
1) = ∅. Finally, since α1 6∈ FTV(α2 ±2

1 {l21 : τ2
1 } · · · ±2

m {l2m : τ2}),
α2 6∈ FTV(α1 ±1

1 {l11 : τ1
1 } · · · ±1

n {l1n : τ1
n}), α fresh, and ∀1 ≤ i ≤ n, 1 ≤ j ≤ m : l1i 6= l1j , S0

satisfies I(E) ∪ I(S) ∪ {(α1, α±2
1 {l21 : τ2

1 } · · · ±2
m {l2m : τ2}), (α2, α±1

1 {l11 : τ1
1 } · · · ±1

n {l1n :
τ1
n})}. But then, (K0, S0) respects I(K) ∪ {(α, I({{F l

1 + F l
2 || F r

1 + F r
2}}))} ∪ I(SK) ∪

{(α1, {{F l
1 || F r

1}}), (α2, {{F l
2 || F r

2}})}, and S0 satisfies I(E ∪ {(F l
1(l),F l

2(l)) | l ∈ dom(F l
1) ∩

dom(F l
2)}∪{(F r

1 (l),F r
2 (l)) | ldom(F r

1 )∩ dom(F r
2 )})∪I(S)∪{(α1, α±2

1 {l21 : τ2
1 } · · ·±2

m {l2m :
τ2
m}), (α2, α±1

1 {l11 : τ1
1 } · · · ±1

n {l1n : τ1
n})}.

Using the three previous properties, we can conclude the correctness of the algorithm. Let (K,E)
be a given kinded set of equations. Suppose the algorithm terminates with (K ′, S). Then there
is some SK such that (E,K, ∅, ∅) is transformed to (∅,K ′, S, SK) by repeated applications of
the transformation rules. Property 1 trivially holds for (E,K, ∅, ∅), which means that (K ′, S)
is a kinded substitution, and dom(S) ∩ dom(K ′) = ∅. Therefore (K ′, S) respects K ′. S also
trivially satisfies S ∪ ∅, therefore, by Property 2, (K ′, S) also respects SK, therefore, (K ′, S) is
a unifier of (K ′ ∪ SK, ∅ ∪ S). By Property 3, (K ′, S) is also a unifier of (K ′ ∪ SK, ∅ ∪ S). Let
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(K0, S0) be any unifier of (K,E). By Property 3, it is also a unifier of (K ′ ∪ SK, ∅ ∪ S). But,
then S0 = S0 ◦ S and (K ′, S) is more general than (K0, S0). Conversely, suppose the algorithm
fails. Then (E,K, ∅, ∅) is transformed to (E′,K ′, S′, SK ′) for some E′,K ′, S′, SK ′ such that
E′ 6= ∅, and no rule applies to (E′,K ′, S′, SK ′). It is clear from the definition of each rule that
(K ′, SK ′, E′ ∪ S′) has no unifier, and therefore, by Property 3, that (K,E) has no unifier. The
termination can be proved by showing that each transformation rule decreases the complexity
measure of the lexicographical pair consisting of the size of the set dom(K) and the total number
of occurrences of type constructors (including base types) in E.
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