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Abstract

In this thesis we examine the rings of Lipschitz and Hurwitz integers, de-
scribe some of their properties, and apply those to solve certain systems of
Diophantine equations. In particular, we expound the parts of the seminal
works of Hurwitz and Pall on those integers that are most relevant to our
purposes.

The main result of this thesis is the proof of Zhi-Wei Sun’s “1-3-5 Con-
jecture”. This conjecture states that any integer can be written as a sum of
four squares, x2 + y2 + z2 + t2 (x, y, z, t ∈ N), in such a way that x+ 3y+ 5z
is also a square. We present a proof that uses basic arithmetic on the ring of
Lipschitz integers, together with an idea that combines metacommutation
and conjugation by Lipschitz primes of norm 3, 5, and 7.

Moreover, we prove a similar result for many systems of equations with a
form analogous to the 1-3-5 conjecture. We also present a result about the
cycle structure of the permutation induced by the metacommutation map for
prime quaternions, and present a generalization of this map for semiprime
quaternions. Finally, we propose a way to attack similar open problems by
using a method that uses this generalization, and show how one can get, at
least, partial results using this method.





Resumo

Nesta tese, examinamos os anéis dos inteiros de Lipschitz e de Hurwitz,
descrevemos algumas das suas propriedades e usamos essas propriedades
na resolução de certos sistemas de equações Diofantinas. Em particular,
expomos as partes dos trabalhos seminais de Hurwitz e Pall relativos a esses
inteiros que são mais relevantes para os nossos propósitos.

O principal resultado desta tese é a demonstração da “Conjetura 1-3-5”
de Zhi-Wei Sun. Esta conjetura afirma que qualquer número inteiro pode ser
escrito como uma soma de quatro quadrados, x2 +y2 + z2 + t2 (x, y, z, t ∈ N),
de tal maneira que x+ 3y + 5z seja também um quadrado. Apresentamos
uma demonstração que usa a aritmética básica do anel de números inteiros
de Lipschitz, juntamente com uma ideia que combina metacomutação e
conjugação por números primos de Lipschitz de norma igual a 3, 5 e 7.

Demonstramos ainda um resultado semelhante para outros sistemas de
equações com uma forma análoga à do sistema da conjetura 1-3-5. Também
apresentamos um resultado sobre a estrutura da decomposição em ciclos
da permutação induzida pela aplicação de metacomutação para quaterniões
primários e uma generalização desta aplicação para quaterniões semiprimos.
Por fim, propomos uma maneira de atacar problemas abertos semelhantes,
usando um método que usa essa generalização e mostramos como é possível
obter, pelo menos, resultados parciais com tal método.
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1
Introduction

The main study of this thesis is the investigation of the rings of Lipschitz
and Hurwitz integers. We prove some of the key properties of them, and
apply those to solve certain systems of Diophantine equations. These rings
are subrings of the ring of Hamilton Quaternions, that is denoted by H,
and is defined to be

H = {a+ bi+ cj + dk | a, b, c, d ∈ R},

which is actually a division algebra over R. The multiplication in H is
determined by

i2 = j2 = k2 = ijk = −1.

Let α = a+ bi+ cj + dk ∈ H. The quaternion ᾱ = a− bi− cj − dk is called
the conjugate of α. The Norm of α ∈ H is defined to be

N(α) = αᾱ = a2 + b2 + c2 + d2.

Definition 1.1. The ring of Lipschitz integers is denoted by L and is

defined to be

L = {a+ bi+ cj + dk | a, b, c, d ∈ Z}.

1



2 Chapter 1. Introduction

Definition 1.2. The ring of Hurwitz integers is denoted by H and is

defined to be

H =
{
a+ bi+ cj + dk | a, b, c, d ∈ Z or, a, b, c, d ∈ 1

2 + Z
}
.

Let a, b ∈ H. We say that a divides b from the left and write a ⌉ b,
if there is c ∈ H such that ac = b. Similarly we say that a divides b from
the right and write a ⌈ b, if there is c ∈ H such that ca = b. Division on
the left and on the right in L are defined the same way.

The elements in L of norm equal to a rational prime are called Lipschitz
primes. We say that a Lipschitz prime P ∈ L of norm p, lies above p. A
Hurwitz prime is similarly an element in H with rational prime norm.

On the second chapter, after some preiliminaries, we will prove some of
the major properties of these rings. In particular we will see that both of
them constitute an order in the quaternion algebra

H(Q) = {a+ bi+ cj + dk | (a, b, c, d) ∈ Q4},

with H being a maximal one. Moreover, we will present the proofs of [3,
Theorem 2, p. 57] and of [15, Theorem 1], which establish that both of these
rings have a kind of unique factorization into prime elements, albeit a much
weaker one than the unique factorization of the integers, due to the lack of
commutativity. We finish the second chapter with an exposition of the ideals
in the ring of Lipschitz integers.

In chapter 3, we will present some of the work that has been done by
Adolf Hurwitz and Gordon Pall on these rings. Using the arithmetic on
the ring of Lipschitz integers, we will present Hurwitz’s very natural way to
prove Jacobi’s 4 square theorem:

Theorem 1.3 (Jacobi). The number of ways to represent n as the sum of

four squares is eight times the sum of the divisors of n, if n is odd, and 24

times the sum of the odd divisors of n, if n is even.
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This proof can be found in [7], in German. Moreover we will prove a
particular case of the above theorem, which is the following.

Theorem 1.4. Let p ∈ Z be a prime. There are p+ 1 Lipschitz primes up

to associates that lie above p.

We will finish chapter 3 by exposing some major results of Gordon Pall
papers [15] and [16] on the arithmetic of quaternions.

In chapter 4 we will demonstrate the main result of this thesis, which
is a proof of the Zhi-Wei Sun’s “1-3-5 Conjecture”, that states the
following:

Theorem 1.5. Any m ∈ N can be written as a sum of four squares, x2 +
y2 + z2 + t2 with x, y, z, t ∈ N0, in such a way that x+ 3y + 5z is a perfect

square.

There have been some advances towards a proof of this conjecture in the
past, namely Y.-C. Sun and Z.-W. Sun in [18] proved that any n ∈ N can be
written as x2 + y2 + z2 + t2 with x, y, 5z, 5t ∈ Z such that x+ 3y + 5z is a
square (cf. Theorem 1.8 of their paper). Moreover, H.-L. Wu and Z.-W. Sun
in [22] showed that any sufficiently large n ∈ N with 16 - n can be written
as x2 + y2 + z2 + t2 with x, y, z, t ∈ Z such that x + 3y + 5z ∈ {1, 4} (cf.
Theorem 1.3(i) of their paper).

While the previous attempts to attack the conjecture used the theory of
quadratic forms, we use the arithmetic of the ring of Lipschitz integers. At
first we will utilize the “unique factorization” that takes place in the ring of
Lipschitz integers to prove the following:

Theorem 1.6. Let ζ ∈ L and m,n ∈ N be such that N(ζ)m − n4 is non-

negative and not of the form 4r(8s + 7), for any r, s ∈ N0. If ζ = a + bi +
cj + dk ∈ L, then the system

 m = x2 + y2 + z2 + t2

n2 = ax+ by + cz + dt.
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has integer solutions for all a, b, c, d ∈ Z such that

N(ζ) =



1, 3, 5, 7, 11, 15, 23
2m

3 · 2m

7 · 2m

where m is odd and positive.

This happens due to the fact that if the norm of a given ζ ∈ L is equal
to one of the values in the above list, then ζ has just one decomposition, up
to signs and order, as a sum of 4 squares. In the particular case of the “1-3-5
conjecture”, ζ = 1 + 3i + 5j and N(ζ) = 35. It turns out that 35 has two
distinct decompositions as a sum of 4 squares, namely the 1, 3, 5, 0 and the
1, 3, 3, 4. This realization yielded the following result:

Proposition 1.7. Let n ≤ 4√35m be such that 35m− n4 is not of the form

4r(8s+ 7), for any r, s ∈ N0. Then either the system

 m = x2 + y2 + z2 + t2

n2 = x+ 3y + 5z.
(1.1)

has integer solutions, or the system

 m = x2 + y2 + z2 + t2

n2 = x+ 3y + 3z + 4t.
(1.2)

has integer solutions.

For a fixed m, computational data has shown a pattern for the n’s that
the system  m = x2 + y2 + z2 + t2

n2 = x+ 3y + 5z.
(1.3)

has a solution in Z. Henceforth a new idea was necessary in order to prove
the conjecture. The first step was to assume that the second system has a
solution in Z, and then find a way to show that the first one has a solution
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as well. Using primes above 3, 5 and 7, and some brand new ideas and
techniques, consisting of a combination of conjugation and metacommuation
in L (see below), it was made possible to jump from a solution of the second
system to a solution for the first system.

After the proof of the integer case of the conjecture it remained to prove
the natural case. This part was done using elementary number theory tools
and it was an adjustment of a similar thing that was done by Legendre in
[10].

The natural case was then reduced to the computational verification
of the conjecture up to a certain constant. This part was done with the
major contribution of Rogério Reis, a colleague at the Computer Science
department, who helped to implement a very efficient algorithm in C, that
checked the conjecture up to the desired constant. For more details on these
computations please read [12].

In chapter 5 we will take a closer look at the metacommutation prob-
lem, which was first introduced in [3, p.61], and that can be described as
follows. Let p be a rational prime and Q a Hurwitz prime of norm q ̸= p, then
from “unique factorization” in H, we have that for every Hurwitz prime P of
norm p, we can find primes Q′, P ′ ∈ H of norms q, p respectively, satisfying

PQ = Q′P ′ (1.4)

and the pair (Q′, P ′) is unique up to unit-migration. This process of swapping
two primes is called metacommutation, which yields the map :

µQ : Πp → Πp.

[P ] 7→ [P ′],

where P ′ is obtained from P as in (1.4) and Πp is the set of left associate
classes above p. The map is called the metacommutation map of the primes
of norm p by Q, and is a permutation of the p+ 1 primes lying above p.
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There are two papers that examine this permutation, namely [2] and [6],
and they both prove, using different methods, the following:

Theorem 1.8. The sign of the permutation induced by the metacommutation

map µQ is the quadratic character
(q
p

)
of q modulo p.

If p = 2, or if Q is congruent to a rational integer modulo p, then µQ is

the identity permutation. Otherwise it has 1 +
(Tr(Q)2 − 4q

p

)
fixed points.

Examining the proof of [2] we were able to provide a proof of the following
result that shades some more light on the cycles of µQ.

Proposition 1.9. The nontrivial cycles of µQ have length 2 if and only if

Q is pure modulo p, and they have length 3 if and only if N(Q) ≡ Tr(Q)2

(mod p).

After that, we will define a generalization of the metacommutation map.
Moreover we will see how one can use this generalization in order to attack
problems like the “1-3-5 conjecture”, and get at least some partial results
about their solvability in the process. We will close this thesis with some
easy consequences of metacommutation on the ring of Lipschitz integers, and
state some open problems that can be the subject of future work.



2
Hurwitz and Lipschitz Integers

The aim of this chapter is to expound the main properties of the rings of
Hurwitz and Lipschitz integers. In particular, after some preliminaries, we
will see that both of these rings are an order in the quaternion algebra
H(Q) with H being a maximal one. Moreover, we will prove a factorization
property, that both of these rings possess, and finish the chapter with some
results about their ideals. Most of the properties of these rings, that will be
proved here, can be found in the literature, and if so we will state where.
Some other properties, even though they are not very difficult to deduce,
could not be found in the literature.

2.1 Preliminaries

We have already defined the rings of Lipschitz and Hurwitz integers in the
introduction. Moreover, for x ∈ H, we have defined the norm of a quaternion
to be equal to N(x) = x̄x, where x̄ is the conjugate of the quaternion x. The
trace of the quaternion x ∈ H is defined to be Tr(x) = x+ x̄ = 2ℜ(x), where
ℜ(x) is the real part of x. Notice that Tr(x) ∈ Z. A quaternion x ∈ H is
called pure if its real part is equal to zero, and is called pure modulo m,
where m is a rational integer, if m | ℜ(x).

7
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Notice that the real part of a product of two quaternions can be written
as

ℜ(uv) = ū · v = u · v̄,

where, the dot denotes the usual inner product on R4.
Moreover, from the above one can easily get

u · v = ℜ(uv̄) = 1
2(uv̄ + vū).

In the particular case v = u, we get

u · u = uū = N(u).

The units in H and in L are the elements that have norm equal to 1. We
can easily see that the units in H are the elements

±1,±i,±j,±k, ±1 ± i± j ± k

2 ,

while the units in L are the elements

±1,±i,±j,±k.

2.2 Orders in H(Q)

The Propositions presented in this section, as well as their proofs, can be
found on many textbooks on Abstract Algebra in the context of Number
Fields and their Rings of Integers, see for example [14, Chapter 2], and
they might have been slightly altered on some occasions in order to fit our
purposes.

Definition 2.1. Let R be a ring. An R-module M is torsion-free if for

each m ∈ M and each nonzero r ∈ R we have that rm ̸= 0.

Definition 2.2. Let R be a ring. An R-module M is a lattice if M is

finitely generated over R and is R-torsion-free.
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Definition 2.3. Let A be a ring that is a finite-dimensional algebra over

the field Q of rational numbers. An order is a subring O of A, such that O

spans A over Q and O is a Z -lattice in A.

By the above definitions we see that the rings H,L are both Z-orders in
H(Q). Since L ⊂ H, L is not a maximal order in H(Q). The best candidate
for the maximal Z-order in H(Q) is the integral closure of Z in H(Q), and it
turns out that the integral closure of Z in H(Q) is precisely H. This section
will be dedicated for the proof of this fact.

Definition 2.4. Let R be a subring of H(Q). An element α ∈ H(Q) is called

integral over R if and only if it is a root of some monic polynomial in R[x].
The set of elements of H(Q) that are integral over Z is called the integral
closure of Z in H(Q), and we will denote it by OH(Q).

Proposition 2.5. An element α in H(Q) is integral over Z if and only if α

is integral over Q and its minimal polynomial mα,Q(x) (the monic polynomial

of least degree in Q[x] having α as a root) has integer coefficients.

Proof. If α is integral over Q with ma,Q(x) ∈ Z[x], then by definition α is
integral over Z. Conversely, let α be integral over Z, and f(x) be a monic
polynomial in Z[x] of minimum degree having α as a root. If f were reducible
in Q[x], then by Gauss’s Lemma f(x) = g(x)h(x) for some monic polynomials
g(x), h(x) in Z[x] of degree smaller than the degree of f . But then α would
be a root of either g or h, contradicting the minimality of f . Hence f is
irreducible in Q[x], so f(x) = mα,Q(x) and so the minimal polynomial for α
has coefficients in Z.

Proposition 2.6. Let α ∈ H(Q). The following are equivalent:

(i) α is integral over Z;

(ii) the additive group of the ring Z[α] is finitely generated;

(iii) αA ⊂ A for some finitely generated non-zero additive subgroup A ⊆

H(Q).
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Proof. (i) ⇒ (ii): If α is a root of a monic polynomial over Z of degree n,
then in fact the additive group of Z[α] is generated by 1, α, . . . , αn−1.
(ii) ⇒ (iii) trivially.
(iii) ⇒ (i) Let a1, . . . , an generate A. Expressing each αai as a linear
combination of a1, . . . , an with coefficients in Z, we obtain


αa1

...
αan−1

 = M


a1
...

an−1

 ,

where m is an n× n matrix over Z. Equivalently,

(αI −M)


a1
...

an−1

 = 0.

Since not all ai are zero, we must have that det(αI −M) = 0. Expressing
this determinant in terms of powers of α, we see that α is a zero of a monic
polynomial of degree n with integer coefficients, hence it is integral over
Z.

Corollary 2.7. If α and β are integral over Z, then so are α+ β and αβ.

Proposition 2.8. The ring of Hurwitz integers H is the integral closure of

Z in H(Q), and since it is an order in H(Q), it is the maximal one.

Proof. Let α ∈ H. Since α is a root of the polynomial

x2 − Tr(α)x+ N(α),

and Tr(α),N(α) ∈ Z, we have that H ⊆ OH(Q). In order to show that this is
the full integral closure, take β = b0 + b1i+ b2j + b3k ∈ H(Q) and assume
that β is integral over Z. If b1 = b2 = b3 = 0 then β = b0 ∈ Q, and by
Proposition 2.5 we get that b0 ∈ Z and so β ∈ H. If (b1, b2, b3) ̸= (0, 0, 0),
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then the minimal polynomial of β is

mβ,Q(x) = x2 − 2b0x+ b2
0 + b2

1 + b2
2 + b2

3.

By Proposition 2.5 we get that 2b0 ∈ Z, and b2
0 + b2

1 + b2
2 + b2

3 ∈ Z. Now, if
we use corollary 2.7, we get that βi, βj, βk are integral as well. Applying the
same argument, we get that 2b1, 2b2, 2b3 ∈ Z. Then b2

0 + b2
1 + b2

2 + b2
3 ∈ Z,

from which it is easy to see that either all of the bi’s are integers, or all of
them are half integers, i.e. β ∈ H, and therefore H = OH(Q).

2.3 “Unique factorization” and Euclidean division

in H.

A Hurwitz integer is called irreducible if it is not 0 or a unit and is not a
product of non-units. As a convention we will call the irreducible quaternions,
prime quaternions, in accordance to the literature, even though they are
not primes in the usual sense of commutative algebra: it is possible for
an irreducible quaternion q, to divide from the left a product ab, ⌉ ab,
without having either q ⌉ a or q ⌉ b. The same of course holds for right
division. This is a consequence of the non unique factorization, e.g. let
d = (1 + k)(1 + i+ j) = 1 + 2j + k, and q = 1 − i+ j, then q ⌉ d, since we
can write d = q(1 + k), but we do not have either d ⌉ 1 + k, or d ⌉ 1 + i+ j.

Let us now see some nice properties of H.

Proposition 2.9. The ring H is right (and left) norm-Euclidean.

Proof. Given α, β ∈ H, let δ = β−1α = (β̄α)/N(β), and let ρ be the
quaternion built from δ by taking the integers closer to its coordinates.
Put ϵ = δ − ρ. One has then N(ϵ) ≤ 4(1/2)2 = 1 and N(ϵ) = 1 ⇐⇒

ϵ = ±1
2 ± 1

2 i ± 1
2j ± 1

2k. Moreover, in the case N(ϵ) = 1 we may assume
that ϵ = 1

2 + 1
2 i + 1

2j + 1
2k, by building ρ from δ, appropriately. Put also

τ = βϵ = β(δ − ρ) = α − βρ ∈ H. One then has that α = βρ + τ , with

N(τ) = N(β) N(ϵ) ≤ N(β).
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If N(ϵ) = 1 then ϵ = δ − ρ ∈ H, so β−1α = δ = ρ+ ϵ ∈ H, which means
that β | α on the left, and if N(ϵ) < 1 then N(τ) < N(β). Therefore, the
norm is a left-euclidean function in H.

Corollary 2.10. The ring H is a right (left) principal ideal domain.

Contrary to H, we have that

L is not a right (or left) principal ideal domain.

Indeed, consider the right ideal (1 + i, 1 − j). We will show that it is not
principal. Suppose that (1 + i, 1 − j) = xL, for some x ∈ L. Then, there is
ℓ1, ℓ2 ∈ L such that 1 + i = xℓ1 and 1 − j = xℓ2. Taking norms, we have the
following two cases:

• If N(x) = 1, i.e. x is a unit, then (1 + i, 1 − j) = L. Thus, there must
exist α1, α2 ∈ L such that (1 + i)α1 + (1 − j)α2 = 1. We then would
have that

1 = (1 + i)α1 + (1 + i)(1/2 − 1/2i− 1/2j + 1/2k)α2

= (1 + i)[α1 + (1/2 − 1/2i− 1/2j + 1/2k)α2],

which is absurd.

• If N(x) = 2, then N(ℓ1) = N(ℓ2) = 1, and therefore x would be a right
associate of both 1 + i and 1 − j, hence 1 + i would be a right associate
of 1 − j, which is not the case.

A consequence of the above is that

L is not right (or left) Euclidean.

Due to the lack of commutativity in H, there is no unique factorization as
we know it from the rational integers, but there is a similar result, significantly
weaker though, that is the following.
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Theorem 2.11. To any factorization of the norm q of a primitive Hurwitz

integer Q (i.e not divisible by any natural number n > 1) into a product

p0p1 · · · ps of rational primes, there is a factorization Q = P0P1 · · ·Ps of Q

into a product of Hurwitz primes with N(P0) = p0, . . . ,N(Ps) = ps. We shall

say that "the factorization P0P1 · · ·Ps of Q is modelled on the factorization

p0p1 · · · ps of N(Q)." Moreover, if Q = P0P1 · · ·Ps is any one factorization

modelled on p0p1...ps, then the others have the form

Q = P0U1 · U−1
1 P1U1 · U−1

1 P2 · · ·U−1
s Ps,

i.e., "the factorization on a given model is unique up to unit-migration."

The proof of this theorem can be found on [3], which we reproduce here
with some slight modifications.

Proof. Let Q ∈ H be primitive with N(Q) = q = p0p1 · · · ps, and consider
the right ideal p0H + QH. It must be principal, since H is left euclidean,
so there is a unique Hurwitz integer P0, up to right multiplication by units,
such that:

p0H +QH = P0H (2.1)

Then, there is a ∈ H such that

p0 = P0a. (2.2)

Taking norms, we see that N(P0) must divide N(p0) = p2
0. Therefore, N(P0)

is equal to 1, p0 or p2
0.

If N(P0) = 1, then p0H +QH would be the whole ring, and this cannot
happen because an arbitrary element h = p0a+Qb of this ideal has norm

N(h) = (p0a+Qb)(p0a+Qb) = N(p0) N(a) + p0[aQb+Qba] + N(Q) N(b)

= p2
0 N(a) + p0[aQb+Qba] + p0p1 · · · psN(b), which is divisible by p0.



14 Chapter 2. Hurwitz and Lipschitz Integers

Now, if N(P0) = p2
0, then by (2.2) we must have that a is a unit, so

P0 = p0a
−1, which means that p0 | P0, and thus p0 | Q by (2.1), which does

not happen since Q is assumed primitive.

Therefore, we must have N(P0) = p0. Thus, P0 is a Hurwitz prime which
is unique up to right multiplication by units, and that by (2.1) divides Q.
So there exists Q1 ∈ H such that Q = P0Q1, with N(Q1) = p1p2 · · · ps.

Repeating the argument for the ideal p1H +Q1H = P1H, we can show
that Q1 = P1Q2, with N(Q2) = p2 · · · ps. Doing the same for all the remaining
Qi’s we show that there is a factorization Q = P0P1 · · ·PsQ

′, where from
a norm argument Q′ must be a unit, so Ps can absorb it. So, there exists
a factorization of Q modeled on its norm, and it is unique up to right
multiplication by a unit, since all the Pi’s are unique up to right multiplication
by a unit.

Proposition 2.12. An element of H is prime if and only if its norm is a

rational prime.

Proof. Let h ∈ H. If h is not a Hurwitz prime then it must be a product of
two non units, and so its norm cannot be a rational prime.

If N(h) is not a rational prime, then it has a prime factorization of at
least two primes which would correspond to at least two Hurwitz primes in
the factorization of h, and so h is not a Hurwitz prime.

2.4 Automorphisms and bilateral ideals of H.

In this section we will at first study the automorphisms in H which is based
on the work of Hurwitz, see [7, Vorrlesung 5]. We will present Hurwitz’s
proof of the fact that the only automorphisms in H are the conjugation maps,
by some specific elements in H. A corollary of this result, about bilateral
ideals in H, will be proved to finish of this section.
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Define the conjugation map in the Hamilton quaternions

ϕα : H → H

γ 7→ αγα−1

We would like to see for which elements α ∈ H, do we have ϕα(H) = H. We
notice that if α is a rational integer or a unit, then for any γ ∈ H, we have
αγα−1 ∈ H. We also see that for γ = h1 + h2i+ h3j + h4k, and 1 + i (the
unique, up to associates, prime above 2 in H) one has

(1 + i)γ(1 + i)−1 = h1 + h2i− h4j + h3k.

Moreover, conjugation by any finite product of these kind of elements pre-
serves H. For these values of α, ϕα induces an H-automorphism.

Proposition 2.13. The only possible automorphisms of H are the ones

induced by ϕα on H, for α ∈ H of the form ε(1+ i)nrm, where ε ∈ H∗, r ∈ Z

and n,m ∈ N0.

Proof. Let ψ : H → H be an automorphism.

For any of the units ε ∈ U = {±i,±j,±k}, ψ(ε) must be a unit as
well since ψ(ε)2 = ψ(ε2) = −1, and so N(ψ(ε)) = 1. Now, ψ(ε) can not
be any of the units in H \ L because the equation ψ(ε)2 = −1 is satisfied
only for the units in U . Therefore, we have that the image of each unit
ε ∈ U is again in U , and ψ is completely determined by what it does to the
units in U . This leads to the question: how many possible automorphisms

ψ can exist? There are 3! × 23 = 48 possible combinations of the image
of i, j and k under ψ. From those 48 we are interested in the ones that
also fulfill the condition ψ(ijk) = ψ(i)ψ(j)ψ(k) = −1. It is easy to see
that exactly half of them do. Note that if a given map ψ′ in H is such
that ψ′(U) = U , ψ′(1) = 1, ψ′(−1) = −1 and ψ′(i)ψ′(j)ψ′(k) = 1, then ψ′

is an anti-automorphism in H. The last remark means that there are 24
anti-automorphisms in H as well.
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Let ε0, ε1 ∈ H∗ be two different units in H. Then if we had ε0γε
−1
0 =

ε1γε
−1
1 for all γ ∈ H, this would imply that ε−1

1 ε0γ = γε−1
1 ε0, and since

ε−1
1 ε0 ∈ H∗ we would have that the equality εγ = γε holds for all γ ∈ H

and for some unit ε ∈ H∗. This can only happen when ε = ±1, which means
that ε1 = ±ε0, and since ε1, ε0 were assumed to be different to each other we
have that ε1 = −ε0. This means that the 24 units ∈ H∗ induce 12 different
automorphisms ϕα. Now, if in the above argument we replace ε1 by 1 + i,
we get that the equality εγε−1 = (1 + i)γ(1 + i)−1, ∀γ ∈ H implies that
(1 + i)−1εγ = γ(1 + i)−1ε and this can only happen when (1 + i)−1ε ∈ R,
which does not happen. Therefore, 1 + i and its associates determine 12
more different automorphisms ϕα. Hence, we have 24 in total, different
automorphisms for α = ε(1 + i) or α = ε, with ε ∈ H∗. Now, it is easy to
see that if α = ε(1 + i) or α = ε, for some ε ∈ H∗, then rα, r ∈ Z, induces
the same automorphism as α, since αγα−1 = rαγ(rα)−1 ∀γ ∈ H.

Therefore, since there can be only 24 automorphisms in H, and the ones
induced by ϕα for α of the form ε(1 + i)nrm are 24 as well, it follows that
those ϕα are the only automorphisms in H.

Corollary 2.14. The only two-sided ideals in H are the ones generated by

elements of the form (1 + i)nrm, where r ∈ Z and n,m ∈ N0.

Proof. Let a be of the form (1 + i)nrm, and consider the left ideal aH EH.
From Proposition 2.13, we know that for any h ∈ H there exists an ℓ ∈ H

such that ah = ℓa, and vice-versa. Therefore, the left ideal aH is equal to
the right ideal Ha, which means that aH is a two-sided ideal.

On the other hand, assume we have a two sided ideal in H, and since H

is left (right) Euclidean, it is principal as a left and as a right ideal. We will
start by showing that all two sided ideals have the same generator as a left
and as a right ideal. Assume that its left ideal generator is different than its
right ideal generator, meaning that there are a, b ∈ H such that aH = Hb.
We have that a ∈ Hb, therefore there exists h1 ∈ H such that a = h1b. Also
there exists h2 ∈ H such that b = ah2. Taking norms, we can see that h1, h2
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are units, and so a, b are associates, say a = ub, u ∈ H∗. The last equality
implies that Hb = Ha.

Therefore the two sided ideals in H have the form aH = Ha for some
a ∈ H. It follows that if a is a generator of a two sided ideal in H, then
for all h ∈ H, aha−1 ∈ H. By Proposition 2.13 we know that a must be of
the form ε(1 + i)nrm, for some unit ε ∈ H and m,n ∈ Z. The unit can be
omitted since we are talking about two sided ideals.

2.5 Right divisors in L

In this section we will take a look at a particular result from Gordon Pall’s
1940 work ([15] and [16]) on the ring of Lipschitz integers. This result
is similar to Theorem 2.11 about “Unique factorization”, but for the ring
of Lipschitz integers. Notice from the statement below that it is actually
stronger than 2.11.

Theorem 2.15. Let v = v0 + v1i + v2j + v3k ∈ L be primitive modulo m,

where m | N(v), m odd and positive. Then there is a unique, up to left

multiplication by units, right divisor of v of norm m.

Firstly, we observe that if t ∈ L is a right divisor of x ∈ L, that is x = ut

for some u ∈ L, then the left-associates ±t ±it,±jt,±kt of t, are also right
divisors of x of the same norm.

We are going to need some lemmas to help prove Theorem 2.15.

Lemma 2.16. Let x, y ∈ L, m ∈ Z odd. If x ≡ y (mod m), then x and y

have the same right divisors of norm m.

Proof. Let t ∈ L be a right divisor of x with N(t) = m, so that there exists
u ∈ L, such that x = ut. Now x ≡ y (mod m) ⇒ ∃k ∈ L, such that
x = km + y. Therefore we have ut = kt̄t + y, hence y = (u − kt̄)t, which
means that t is a right divisor of y.

Lemma 2.17. Let x, v ∈ L, m ∈ Z odd. If N(x) is relatively prime to m

then v and xv have the same right divisors of norm m.
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Proof. If t is a right divisor of v, then clearly is a right divisor of xv as well.

On the other hand, let t be a right divisor of xv, of norm m. Then we
will have xv = ut, for some u ∈ L. We multiply by x̄ on the left to get
x̄xv = x̄ut, so N(x)v = x̄ut. Now, since (N(x),m) = 1, there are b, c ∈ Z,
such that bN(x)+cm = 1. So bN(x) ≡ 1 (mod m). Multiplying the equation

N(x)v = x̄ut by b on the left, and reducing modulo m yields

v ≡ bN(x)v ≡ bx̄ut (mod m).

It now follows from Lemma 2.17 that t is a right divisor of v as well.

Lemma 2.18. If Theorem 2.15 holds for every odd rational integer that is

a product of at most r − 1 primes (not necessarily distinct) with r > 1, it

holds for any odd number that is a product of r primes.

Proof. Let m = p1p2 · · · pr−1, where pi, i = 1, · · · , r − 1, are odd primes,
and let p be some other odd prime. Let v ∈ L be primitive modulo pm,
pm | N(v) and t be a right divisor of v of norm m, i.e. v = ut, for some
u ∈ L. We are looking for the right divisors of v of norm pm. We have
pm | N(v) = N(u)N(t), so p | N(u). Since we assume that r > 1, u
can be written u = wz, z, w ∈ L, and N(z) = p. Then, v = wzt and
N(zt) = N(z)N(t) = pm, hence zt is a right divisor of v of norm pm.

Now, let x, y ∈ L be two right divisors of v of norm pm, i.e. v = ax = by,

a, b ∈ L. Since N(x) = N(y) = pm, we can write x = ct, y = dt′ with
N(c) = N(d) = p, N(t) = N(t′) = m. By hypothesis t, t′ are left associates.
By letting c, d absorb the unit that distinguish t from t′, we can assume
t = t′. Therefore, ac = bd, and again by hypothesis, c and d must be left
associates. Finally, x = ct, y = dt are left associates too, and therefore all
the right divisors of v of norm pm are left associates.

Lemma 2.19. Let v ∈ L and p ∈ Z be an odd prime. If v is primitive

modulo p, we can choose a pure quaternion x ∈ L of norm relatively prime

to p, such that xv is pure modulo p.
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Proof. Since v = v0 + v1i + v2j + v3k is primitive modulo p, then at least
one of vi, for i ∈ 0, 1, 2, 3, is such that (p, vi) = 1. We may assume that
(p, v1) = 1, i.e. ∃a, b ∈ Z, such that ap+ bv1 = 1, and thus v1b ≡ 1 (mod p).
We need to find x = x1i + x2j + x3k ∈ L, with (N(x), p) = 1, such that
xv is pure modulo p, i.e. x1v1 + x2v2 + x3v3 ≡ 0 (mod p). We multiply the
last equation with b and we get x1 ≡ x2e + x3f (mod p), where e ≡ −v2b

(mod p) and f ≡ −v3b (mod p). From (N(x), p) = 1 ⇒ x2
1 + x2

2 + x2
3 ̸≡ 0

(mod p) and x1 ≡ x2e+ x3f (mod p) we get

(1 + e2)x2
2 + 2efx2x3 + (1 + f2)x2

3 ̸≡ 0 (mod p)

Now, the coefficients of the quadratic form in the above equivalence are not
all zero modulo p, so we can always find x2, x3 ∈ Z that satisfies it. From
x1 ≡ x2e+ x3f (mod p), we can get an x1 ∈ Z such that xv is pure modulo
p.

Now we are ready to prove Theorem 2.15.

Proof of Theorem 2.15. By lemmas 2.16, 2.17, 2.18, and 2.19, we just need
to prove the claim when m is an odd prime p, and v is a pure quaternion
such that

v = i+ v2j + v3k (mod p) and p | Nv.

We have p | N(v), therefore 1 + v2
2 + v2

3 = pb, for some b ∈ Z.
We need to find the right divisors of v of norm p, i.e. we need to find the

quaternions t = t0 + t1i + t2j + t3k ∈ L that satisfy v = ut and N(t) = p,
for some u ∈ L. Now, multiply the equation v = ut by t̄ on the right to get
vt̄ = up ≡ 0 (mod p). From vt̄ ≡ 0 (mod p) we get four congruencies:

t0 ≡ v2t3 − v3t2 (mod p)

t1 ≡ −v2t2 − v3t3 (mod p)

t2 ≡ v2t1 + v3t0 (mod p)

t3 ≡ v3t1 − v2t0 (mod p)
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We notice that if the first two congruences hold, the next two will hold as well.
Let x0, x1, x2, x3 ∈ Z be such that t0 = v2t3 − v3t2 + px0, t1 = −v2t2 − v3t3 +
px1, t2 = x2, and t3 = x3. Substituting this into N(t) = t20 + t21 + t22 + t23 = p,
we get

p(x2
0 + x2

1) + b(x2
2 + x2

3) + 2v2(x0x3 − x1x2) − 2v3(x1x3 + x0x2) = 1. (2.3)

Therefore v has as many right divisors of norm p as there are solutions of
this equation. So we just need to determine when the quadratic form

p(x2
0 + x2

1) + b(x2
2 + x2

3) + 2v2(x0x3 − x1x2) − 2v3(x1x3 + x0x2). (2.4)

represents 1. We have that (2.3) can be written as

XAXT = 1,

where
X =

(
x0 x1 x2 x3

)
,

and

A =


p 0 −v3 v2

0 p −v2 −v3

−v3 −v2 b 0
v2 −v3 0 b


The quadratic form (2.4) is positive, being derived from

4∑
i=1

t2i , and one
can check that that det(A) = 1, i.e. the discriminant of (2.4) is equal to 1.
Therefore, by [17, Corollary, p. 154] it is equivalent to

4∑
i=1

x2
i . Now, the 8

units of L are the only solutions of
4∑

i=1
x2

i = 1, thus the quadratic form 2.3
has 8 solutions as well. Hence, there are 8 right divisors of v of norm p. The
8 left-associates of a given right divisor t must be the ones we are looking
for.
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Corollary 2.20. Theorem 2.15 holds with m ∈ Z even, provided v ∈ L is

primitive and N(v)/m is odd.

Proof. It is clear that Theorem 2.15 holds for left divisors as well. Since

N(v)/m is odd and v is primitive, Theorem 2.15 applies, hence there is a
unique up to right associates left divisor of v of norm N(v)/m. Call this left
divisor t. So we have that v = tu, for some u ∈ L, with N(u) = m, and since
t is unique up to right associates, u must be unique up to left associates.

Corollary 2.21. Let x, z ∈ L, m ∈ Z odd. If z and xz are both primitive

modulo m, and m | Nz, then z and xz have the same right divisors of norm

m.

Proof. Let t be a right divisor of xz of norm m, and t′ be a right divisor
of z of norm m. Then, clearly t′ is a right divisor of norm m of xz as
well. Therefore, by Theorem 2.15, t and t′ are left associates. The claim
follows.

2.6 The ideals in L

Another consequence of Theorem 2.15 is the following.

Proposition 2.22. Let x, y ∈ L. There exists x′, y′ ∈ L, such that

x′y = y′x,

where N(x′) = N(x) and N(y′) = N(y) .

Proof. For a proof of this we direct the reader to the proof of the fact that
the metacommutation map is a permutation, see Chapter 5, Proposition 5.2.
In our case x, y ∈ L are not primes, but the proof still works.

Define now the equivalence relation between ideals in L as follows: for two
right ideals I1, I2 ∈ L we write I1 ∼ I2 if and only if there exist x1, x2 ∈ L

such that x1I1 = x2I2. This is indeed an equivalence relation, since obviously
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• I1 ∼ I1,

• if I1 ∼ I2 then I2 ∼ I1,

• if I1 ∼ I2 and I2 ∼ I3, then there exists x1, x2, x3, x4 such that x1I1 =
x2I2 and x3I2 = x4I3. Now, Proposition 2.22 implies that there
exists x′

3 ∈ L, such that x′
3x2 = x′

2x3, for some x′
2 ∈ L. But then

x′
3x1I1 = x′

2x4I3, which means that I1 ∼ I3.

The set of non-zero right ideals in L modulo this equivalence relation forms
the set of right ideal classes CℓR(L), of L. Note that for ideals in an integral
domain, the operation [I][J ] = [IJ ] of multiplication of classes is well defined
and commutative. Moreover, every ideal in an integral domain is invertible.
Therefore the set of classes together with multiplication forms a group (the
identity element is the class of principal ideals), the well known ideal class
group. For more details see [4, Chapter 16] and [14, Chapters 3 and 5]. In
our case the multiplication of two right ideals is not a right ideal, therefore
we can only speak of the right ideal class set. Now it is easy to see the
following.

Proposition 2.23. Each ideal in L is either principal, or can be generated

by two elements.

Proof. Let I E L, and let S be a set of its generators. Now, since L ∼=
Z ⊕ Zi⊕ Zj ⊕ Zk, is finitely generated as an abelian group, and therefore
finitely generated as a Z-module. The integers being a principal ideal domain
implies that I as a submodule of L is finitely generated, therefore S is finite.
Let α, β ∈ S. From the proof of Proposition 2.9, we know that there is
ρ, ϵ ∈ L such that α = βρ+ βϵ, where N(ϵ) 6 1, and N(ϵ) = 1 if and only if
ϵ = 1

2 + 1
2 i+ 1

2j + 1
2k, which is a unit that will play an important role soon,

and we call it ω.

Then do the following:

• If ϵ = 0 i.e. β | α, so we remove α from S.
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• If 0 < N(ϵ) < 1, then we replace α and β by β and the remainder βϵ
in S.

• If N(ϵ) = 1, then we replace α, β by β, βω in S.

We do the same with all the possible pairs of generators, and after a finite
number of steps S becomes a set that all of its elements have the same norm.
If then, there is a β ∈ S, by our division algorithm, all the rest may be
replaced by βω.

Corollary 2.24. The right ideal class set CℓR(L) consists of 2 elements, the

equivalence class of principal ideals and the equivalence class of all ideals

of the form (a, aω), where a ∈ L is a Lipschitz integer of even norm and

ω = 1
2 + 1

2 i+ 1
2j + 1

2k.

Proof. We have that for a, b ∈ L, (a, aω) ∼ (b, bω), since by Proposition 2.22
there exists a′, b′ such that b′a = a′b. By Proposition 2.23, we therefore have
that there are two equivalence classes in CℓR(L), the class of principal ideals
and the class of the ideals of the form (a, aω), for some a ∈ L. The ideals in
L that are of the form (a, aω), implies that N(a) is necessarily even, since
aω ∈ L ⇐⇒ N(a) is even.

Below we list some other general properties of the rings H and L, that
are generally easy to deduce.

Proposition 2.25. The following hold.

(i) The rings H, L are right (left) Noetherian but not right (left) Artinian.

(ii) Let J(H), J(L) be the Jacobson radicals of H,L respectively. Then

J(H) = J(L) = 0.

(iii) The rings H, L are semiprimitive.

(iv) The rings H, L are not semisimple.

(v) The only two sided maximal ideals in H are (1 + i) and (p), where p is

a rational prime.
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(vi) The rings H, L are not perfect.

Proof. (i) The ring L is right Noetherian since every right ideal in L is
finitely generated.

On the other hand, it is easy to see that for pi ∈ Z primes, the chain
of right ideals

(p1) ⊇ (p1p2) · · · ⊇ (p1p2 · · · pn) ⊇ · · ·

does not terminate, therefore L is not right Artinian. Same for H.

(ii) Let y ∈ J(H), y ̸= 0, then from [8, p. 53] we know that 1 − xy is left
invertible for all x ∈ H. Therefore, 1−xy is a unit for all x ∈ H, which
is absurd. Same for L.

(iii) By definition, since J(H) = J(L) = 0.

(iv) It follows from the fact that a left semisimple ring is both left Artinian
and left Noetherian.

(v) Direct consequence of Corollary 2.14 and the definition of a maximal
ideal.

(vi) We have that H/J(H) = H and H is not semisimple, therefore H is
not perfect. Same for L.



3
Hurwitz and Pall on Integral Quaternions

To the extend of our knowledge, there are only two authors that described
in some depth the properties of the rings of Hurwitz and Lipschitz integers.
The first one is Adolf Hurwitz, who wrote in [7] a series of lectures about
these two rings, in German. From his work we have already showed the
result about automorphisms in H. The second author is Gordon Pall, who
wrote a series of articles mostly about the ring of Lipschitz integers, namely
[15] and [16], from which we have already proved Theorem 2.15.

3.1 The work of Hurwitz

Apart from the result on automorphisms of H, Hurwitz had some other
interesting results in the rings of Hurwitz and Lipschitz integers, which
he called the integral Quaternions. We will present some of them here on
this section. In particular we will look into his elegant proof of Jacobi’s
four-square theorem. The main reason for that was that we could not find
any textbook or article containing his work in English. Therefore we went
through 1918’s Hurwitz original paper and translated the old German text
to English. We will not be completely faithful to the original text, we will
try to capture the essence of the arguments instead. Many times instead of
Hurwitz or Lipschitz integer we may just say quaternion, when the Hurwitz
or Lipschitz integer is implied by the context.

25
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Let m ∈ N, the idea behind the Hurwitz’s proof of Jacobi’s four square
theorem, is to create the Quotient ring H/mH and count all the elements
in there that have norm zero. For that reason we will try to create this
Quotient ring for m being odd and see how the result on the automorphisms
of H can be used to get a result for even m as well. First let us see what
happens if we mod out by an even Hurwitz integer.

3.1.1 The Hurwitz integers modulo an even Hurwitz

We have seen in Proposition 2.14 which ideals in H are two sided. Therefore,
we can create the quotient ring H/vH, where v = (1 + i)nrm, for r ∈ Z and
n,m ∈ N0.

Note that for v as above, and any a, b ∈ H, when we write a ≡ b

(mod v),we mean v | a− b from the left and from the right. Since (1 + i) =
(1 + i)i = i(1 + i), if a ≡ b (mod v), then ā ≡ b̄ (mod v).

We would like to examine more closely what happens in the particular
cases : v = 1 + i, v = 2, and v = 2(1 + i).

The quotient ring H/(1 + i)H

We observe that
i− 1 = i(1 + i),

1 − j = 1 − i− j − k

2 (1 + i),

1 − k = 1 − i+ j − k

2 (1 + i),

that is
i ≡ j ≡ k ≡ 1 (mod 1 + i).

We have mentioned earlier that we denote the unit 1+i+j+k
2 by ω. It is easy

to see that a Z-basis for H is {ω, i, j, k}. Therefore any h ∈ H can be written
as

h = λ1ω + λ2i+ λ3j + λ4k,
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where λi ∈ Z, for i = 1, 2, 3, 4. Since all even numbers are congruent 0
modulo (1 + i), one has that the possible remainders modulo (1 + i) are

0, 1, ω, ω + 1,

depending on λ1 and λ2 + λ3 + λ4 been odd or even. Notice that ω2 = ω− 1,
and if we subtract any two of the non-zero possible remainders we end up
with a unit in H, which is clearly not divisible by (1 + i), hence {0, 1, ω, ω2}

is a set of representatives of all the equivalence classes modulo (1 + i).

One can see that h ∈ H is relatively prime to (1 + i) if and only if N(h) is
odd. If r is the highest power of 2 that divides N(h), then h can be written
in the form

h = (1 + i)rh1,

where h1 ∈ H is of odd norm. From now on a hurwitz integer will be called
odd if it has odd norm, it will be called even if for r as above, we have that
r > 2, and it will be called half even if r = 1.

Moreover, we remark that h ∈ L if and only if h ≡ 0 or 1 (mod 1 + i).

The quotient rings H/2H, H/(2 + 2i)H and primary quaternions

In this subsection we describe the equivalence classes in the rings H/2H,
H/2(1 + i)H, and we define the notion of a primary quaternion, which plays
a central role in the proof of Jacobi’s four-square theorem.

Let h = λ1ω+ λ2i+ λ3j + λ4k be some quaternion in H. Letting λi take
the values 0 and 1, we get all the possible remainders modulo 2.

We notice that 1 + i+ j = 2ω − k ≡ k (mod 2). Similarly all sums of 3
of the terms 1, i, j, k will result in a Hurwitz integer congruent to some unit
modulo 2. Also, 1 + i = 2ω − j − k ≡ j + k (mod 2), and similarly for all
sums of two terms of 1, i, j, k. What remains are the units

1, i, j, k, 1 ± i± j ± k

2
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and
0, 1 + i, 1 + j, 1 + k.

Now let b ∈ H be odd. Then we have that b must be congruent to one
of the units 1, i, j, k, 1±i±j±k

2 modulo 2. Thus, there exists a unit ϵ ∈ H

such that bϵ ≡ 1 (mod 2). Clearly b(−ϵ) ≡ 1 (mod 2) as well, but none of
the remaining units u ∈ H can yield bu ≡ 1 (mod 2), since they are not
congruent modulo 2.

For those odd Hurwitz integers that are congruent to 1 modulo 2, we
want to further reduce them modulo (1 + i). We have that if h ≡ 1 (mod 2),
then there exists g ∈ H such that h = 1 + 2g. Now, g must be congruent to
one of 0, 1, ω, ω2 modulo (1 + i), so it can be written in one of the forms

g = g1(1 + i), g1(1 + i) + 1, g1(1 + i) + ω, g1(1 + i) + ω2,

for some g1 ∈ H. That means that every Hurwitz integer that is congruent
to 1 modulo 2 is also congruent to one of

1, 1 + 2 ≡ −1, 1 + 2ω, 1 + 2ω2 ≡ −1 − 2ω

modulo 2 + 2i.

Therefore, by putting everything together, we can see that for every odd
Hurwitz integer b, there is a unit ϵ such that

bϵ ≡ 1 or 1 + 2ω.

Definition 3.1. An odd Hurwitz integer is called primary if it is congruent

to 1 or 1 + 2ω modulo 2 + 2i.

The discussion above has proved the following.

Proposition 3.2. Let b ∈ H be odd, then exactly one of its right (left)

associates is primary.
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Note that (1 + 2ω)2 ≡ 1 (mod 2 + 2i). Hence the product of two primary
Hurwitz integers is again primary. Also, if b ≡ 1 (mod 2 + 2i) then obviously
b̄ ≡ 1 (mod 2 + 2i), and if b ≡ 1 + 2ω (mod 2 + 2i) then b̄ ≡ −1 − 2ω
(mod 2 + 2i), meaning that if b is primary then either b̄ is primary or −b̄ is
primary. Moreover, since 1 + 2ω ≡ 1 (mod 1 + i), we can see that a primary
Hurwitz integer is actually in L.

3.1.2 The Hurwitz integers modulo an odd rational integer

Let h = λ1ω + λ2i+ λ3j + λ4k be as before, an arbitrary Hurwitz integer,
and m ∈ Z be odd. Then since

h ≡ λ1(1 +m)ω + λ2i+ λ3j + λ4k (mod m)

and 1 + m is even, we conclude that a Hurwitz integer is congruent to a
Lipschitz integer modulo any odd rational integer. Moreover we see that any
Hurwitz integer is congruent to

κ1 + κ2i+ κ3j + κ4k

modulo m, where κi, i = 1, 2, 3, 4 are rational integers that take values from
0 to m − 1. Therefore, the m4 different quaternions κ1 + κ2i + κ3j + κ4k

form a complete system of residues modulo m.

An interesting isomorphism

Proposition 3.3. Let m ∈ Z be odd. Then, H/mH ∼= M2(Z/mZ)

Proof. Let

ϕ : H/mH → M2(Z/mZ)

γ1 + γ2i+ γ3j + γ4k 7→

 γ1 + γ2a+ γ4b γ3 + γ4a− γ2b

−γ3 + γ4a− γ2b γ1 − γ2a− γ4b
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where a2 + b2 ≡ −1 (mod m). We start by showing that such a, b always
exist. First, we show this for m = p, a prime number. Consider the sets

A =
{

1 + a2 | a = 0, 1, . . . , p− 1
2

}
,

B =
{

−b2 | b = 0, 1, . . . , p− 1
2

}
.

Both sets contain p+1
2 incongruent numbers modulo p, and if we assume that

their intersection is empty, then there would exist p+ 1 incongruent numbers
modulo p, which is of course absurd.

Now, using Hensel’s Lemma, see [5], for the two variable polynomial

f(x, y) = x2 + y2 + 1

we can see that a2 + b2 ≡ −1 (mod pk), k ∈ N, always has a solution as well.
This together with an application of the Chinese remainder theorem yield
our claim that a2 + b2 ≡ −1 (mod m) has a solution for any m ∈ N.

It is easy to check that ϕ is indeed a homomorphism. It is also not very
hard to check that ϕ(v) = 0 if and only if v = 0, therefore ϕ is injective, and
since it is defined on a finite set to a finite set of the same cardinality, it is
an isomorphism.

Corollary 3.4. If γ ∈ H/mH, then N(γ) = det(φ(γ)) and Tr(γ) = Tr(φ(γ)),
where det and Tr are the usual matrix determinant and trace.

3.1.3 Primitive Hurwitz integers of zero norm in H/mH

As we mentioned earlier, on our way to prove the Jacobi’s four square
theorem, we will need to count the number of zero norm elements in H/mH,
for m ∈ Z, an odd number. First we will do that for a particular type of
Hurwitz integers, that we call primitive modulo m.
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Definition 3.5. A Hurwitz integer h = λ1 + λ2i + λ3j + λ4k, is called

primitive if the greatest common divisor (λ1, λ2, λ3, λ4) is 1 and is called

primitive modulo m if (λ1, λ2, λ3, λ4,m) = 1.

From the isomorphism in Proposition 3.3, if Ah is the image of h under
ϕ then it is clear that h is primitive modulo m if and only if the entries of
Ah and m have greatest common divisor equal to 1. Let

Pm = {A ∈ M2(Z/mZ) | detA = 0 and the entries of A and m have g.c.d = 1} .

Denote the number of Hurwitz integers of zero norm in Z/mZ that are
primitive modulo m by ψ(m). By Proposition 3.3 this number is equal to
the cardinality of Pm. Therefore, ψ(m) is the number of solutions of the
equation ad− bc ≡ 0 (mod m) with (a, b, c, d,m) = 1.

Lemma 3.6. Let m ∈ N be odd and m = pa1
1 p

a2
2 · · · pan

n its prime factoriza-

tion, where pi are distinct primes and ai ∈ N0, for i = 1, 2, . . . , n. Then

ψ(m) =
n∏

i=1
ψ(pai

i )

Proof. This is a direct consequence of the Chinese remainder theorem.

Lemma 3.7. Let ψ be as above, then

ψ(pk+1) = p3kψ(p)

Proof. This is again an application of the multivariate version of Hensel’s
lemma. This time, since we do not just need to know that we have a solution
for highest powers of p, but we need to know the exact number of solutions,
we will perform the actual calculation. We have that ψ(pk) is the number of
primitive solutions of ad− bc ≡ 0 (mod pk). Let a0, b0, c0, d0 be a particular
solution of it, i.e. a0d0 − b0c0 = λpk, for some λ ∈ Z. Then, for x, y, z, w ∈ Z,
consider

a = a0 + pkx, b = b0 + pky, c = c0 + pkz, d = d0 + pkw.
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Since

ad− bc = (a0 + pkx)(d0 + pkw) − (b0 + pky)(c0 + pkz)

= λpk + pk(xd0 + wa0 − b0z − c0y).

We see that ad− bc ≡ 0 (mod pk+1) if and only if

λ+ (a0w − b0z − c0y + d0x) ≡ 0 (mod p). (3.1)

Since we only care about primitive solutions, we know that at least one of
a0, b0, c0, d0 is not divisible by p. Without loss of generality, let us assume
that a0 ̸≡ 0 (mod p). Then, if we let x, y, z run from 0 to p−1 the congruence
(3.1) is satisfied for a unique w ∈ Fp, for each triple (x, y, z). Consequently,
each solution of ad− bc ≡ 0 (mod pk) gives rise to p3 solutions of ad− bc ≡ 0
(mod pk+1), meaning that

ψ(pk+1) = p3ψ(pk).

Repeating this argument k times yields the claim.

Let us now calculate ψ(p). We are looking for the number of solutions of
ad− bc ≡ 0 (mod p) such that (a, b, c, d, p) = 1. So let us break them into p
groups, as follows:

ad ≡ bc ≡ 0, ad ≡ bc ≡ 1, . . . , ad ≡ bc ≡ p− 1 (mod p).

We can easily see that each of the p− 1 groups, except for the first one, has
(p− 1)2 solutions, while the first one has (2p− 1)2 − 1 = 4p2 − 4p solutions,
since the solution (0, 0, 0, 0) must be excluded. Putting everything together,
we have that

ψ(p) = (p− 1)3 + 4p2 − 4p = (p2 − 1)(p+ 1).
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We therefore have that

ψ(pk) = p3k
(

1 − 1
p2

)(
1 + 1

p

)
.

Using Lemma 3.6 we have proved the following.

Proposition 3.8. Let m ∈ N be odd. The number of different Hurwitz

integers of zero norm in H/mH that are primitive modulo m is equal to

ψ(m) = m3 ∏
p|m

(
1 − 1

p2

)(
1 + 1

p

)
.

3.1.4 Counting Hurwitz integers of norm one in H/mH

Now let us see how many Hurwitz integers have norm equal to 1 in Z/mZ.
Denote their number by χ(m). We just need to check the solutions of the
equation ad − bc ≡ 1 (mod m). Similarly to the previous section for m =
pa1

1 p
a2
2 · · · pan

n , where pi are distinct primes, and ai ∈ N0, for i = 1, 2, . . . , n,
we have

χ(m) =
n∏

i=1
χ(pai

i ) (3.2)

and
χ(pk) = p3(k−1)χ(p) (3.3)

Now, in order to calculate χ(p), we again break it down to the p-groups

ad ≡ 2

bc ≡ 1
,


ad ≡ 3

bc ≡ 2
, . . . ,


ad ≡ 0

bc ≡ p− 1
,


ad ≡ 1

bc ≡ 0
(mod p).

Each of the first p− 2 groups has (p− 1)2 solutions, while each of the last
two groups has (p− 1)(2p− 1) solutions. Adding them all together yields

χ(p) = p(p2 − 1)

Using this together with (3.2) and (3.3) we get the following
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Proposition 3.9. Let m ∈ N be odd. The number of different Hurwitz

integers of norm one in Z/mZ is equal to

χ(m) = m3 ∏
p|m

(
1 − 1

p2

)
.

3.1.5 Number of primary primes above a rational prime

Let h ∈ L be a representative of some class of the ψ(p) classes of Hurwitz
integers (ψ from Proposition 3.8) of zero norm in H/pH that are primitive
modulo an odd prime p. Assume that h is such that p2 | N(h), then for
h′ = h+ pt with t ∈ H, we have

N(h′) ≡ N(h) + 2pt (mod p2).

We then can choose t appropriately so that p2 - N(h′). Therefore we may
choose representatives of all those classes in H/pH that have norm divisible
by p but not p2.

Since N(h) is divisible by p, by Theorem 2.11 we know that there exists
π ∈ H with N(π) = p, such that h = aπ, for some a ∈ H. Moreover, since
there is a unique unit in H that makes π primary, we may assume that π is
primary by letting a absorb this unit. Note that a can be assumed to be a
Lipschitz integer according to the initial comments of Section 3.1.2.

Observe also that if we have two distinct primary primes π1 and π2

above p, then aπ1 ̸≡ bπ2 (mod p) for all a, b ∈ L/pL, except for the case
aπ1 ≡ bπ2 ≡ 0 (mod p). Indeed, assume that there exists a, b ∈ L/pL, such
that aπ1 ≡ bπ2 ̸≡ 0 (mod p). Then aπ1π2 ≡ 0 (mod p), and therefore there
exists c ∈ L such that aπ1π2 = cp = cπ2π2. Hence, we have that aπ1 = cπ2,
and thus, since aπ1 ̸≡ 0 (mod p), by Theorem 2.15 we have that π1 = uπ2

for some unit u ∈ L, a contradiction.

Therefore each one of the ψ(p) classes of Hurwitz integers of zero norm
in Z/pZ that are primitive modulo p has a representative of the form aπ,
where a, π ∈ L, and π is a primary prime.
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We will show that for π a primary prime, there are p2−1 different residues
modulo p of the form aπ, a ∈ L, in the list of the representatives of the ψ(p)
quaternions of zero norm in H/pH that are primitive modulo p.

Multiply a given primary prime π on the left with all the p4 different
quaternions modulo p. Then, the number of elements of the form bπ, that are
congruent to a given one aπ, modulo p, is equal to the number of solutions
of the congruence xπ ≡ 0 (mod p) in L/pL.

Lemma 3.10. Let π ∈ H have norm equal to the odd prime p. Then the

equation

xπ ≡ 0 (mod p)

has p2 solutions in L/pL.

Proof. Let Aπ =

a b

c d

 be the matrix in M2(Fp) that corresponds to π

under the isomorphism in Proposition 3.3. The number of solutions in H/pH

of xπ ≡ 0 (mod p) is equal to the number of solutions of

AπX ≡ 0 (mod p)

for X =

x1 x2

x3 x4

 ∈ M2(Fp). Now the last congruence is equivalent to


x1a+ x2c ≡ 0

x1b+ x2d ≡ 0
(mod p) and


x3a+ x4c ≡ 0

x3b+ x4d ≡ 0
(mod p).

Since π is a Hurwitz prime, it is primitive, and therefore Aπ ∈ Pπ. Hence at
least one of a, b, c, d is not divisible by p. Without loss of generality we may
assume that p - a. Thus, looking at the first system


x1a+ x2c ≡ 0

x1b+ x2d ≡ 0
(mod p),
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we have that x1 ≡ −x2ca
−1 (mod p). The second equation is fulfilled

automatically from the first, since

a(x1b+ x2d) = b(x1a+ x2c) + (ad− bc)x2 (mod p).

Therefore, choosing x2 arbitrarily, uniquely determines x1, meaning that
there are p solutions of the first system. The same is true for x3 and x4,
which yields the claim.

A direct consequence of the above lemma is that there are p4/p2 = p2

left multiples of π that are incongruent modulo p. Removing the zero one,
we conclude that there are p2 − 1 different left multiples of a given primary
prime π in the totality of ψ(p) = (p2 − 1)(p+ 1) different Hurwitz primes of
zero norm in H/pH that are primitive modulo p.

Therefore, since for every primary prime π of norm p, we may choose
a representative of the form aπ, for some a ∈ L, for all ψ(p) classes, and
there are p2 − 1 different Hurwitz integers of the form aπ, we conclude the
following.

Theorem 3.11. There are p+ 1 primary primes with norm p.

3.1.6 Primary Hurwitz integers of norm m

Now let b be an odd primary Hurwitz integer, that is b ≡ 1 or 1 + 2ω
(mod 2 + 2i), and let m ∈ Z be the largest integer that divides it. Then
b = mc for some primitive quaternion c ∈ H. Note that both m and −m

divide b, so if we set m to be whichever one is congruent to 1 modulo 4,
then since 2(1 + i) | 4, it follows that c is primary. Therefore, a primary
quaternion that is not primitive can be written as a rational integer times
a primary and primitive quaternion. Note that a Lipschitz prime is always
primitive.
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Proposition 3.12. Let m > 1 be an odd integer. The number of primary

and primitive Lipschitz integers of norm m is equal to

Q(m) = m
∏
p|m

(
1 + 1

p

)
. (3.4)

Proof. Letting m = pkqn . . ., since we are looking for primitive and primary
Lipschitz integers h of norm m, by Theorem 2.11 it suffices to look at all
possible products of the form

π1π2 · · ·πkρ1ρ2 · · · ρn · · ·

with N(πi) = p, N(ρj) = q, . . ., for i = 1, . . . , k, j = 1, . . . , n, and so on, and
such that no two consecutive factors in the product are conjugates.

Now, π1 can be any of the p+ 1 different primary primes of norm p, π2

can be any of the p+ 1 primes of norm p except π̄1, and so on. Hence

Q(m) = (p+ 1)pk−1(q + 1)qn−1 · · ·

which is equal to
Q(m) = m

(
1 + 1

p

)(
1 + 1

q

)
· · ·

From the above proof it follows that if m1 and m2 are relatively prime,
then

Q(m1m2) = Q(m1)Q(m2). (3.5)

Now, let us look at the number of all the primary Hurwitz integers of norm
m. Let b ∈ H be primary but not primitive. There exists d ∈ Z such that
b = dc, with d ≡ 1 (mod 4) and c primitive and primary. We have that

N(b) = d2 N(c) = m. Hence, if we let d go through all the numbers congruent
to 1 modulo 4 whose square divides m, and count all the primary and
primitive quaternions of norm c = m/d2, for each d, then adding everything
together will yield the number of all primary quaternions of norm m. The
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number of all primary and primitive quaternions of norm m/d2 is Q(m/d2),
thus the number of all primary quaternions of norm m is

f(m) =
∑
d2|m

Q

(
m

d2

)
, (3.6)

where the sum runs through all d that their square divide m. Now for
m = pkqn . . ., let d2 = p2aq2b, where a, b, . . . are all non-negative numbers
such that 2a 6 k, 2b 6 n. Then, we have

f(m) =
∑
d2|m

Q

(
m

d2

)
=

k/2∑
a=0

Q
(
pk−2a

)
·

n/2∑
b=0

Q
(
qn−2b

)
· · ·

By (3.4) we have

k/2∑
a=0

Q
(
pk−2a

)
= Q

(
pk
)

+Q
(
pk−2

)
+Q

(
pk−4

)
+ . . .+

= pk−1(p+ 1) + pk−3(p+ 1) + pk−5(p+ 1) + . . .

= pk + pk−1 + . . .+ p+ 1.

This proves the following result.

Proposition 3.13. Let m ∈ Z be odd. The number of primary Hurwitz

integers of norm m is equal to the divisor function

σ(m) =
∏
p

νp(m)∑
i=1

pi =
∑
d|m

d, (3.7)

where νp(m) is the p-adic valuation of m.

3.1.7 Jacobi’s four-square Theorem

On this section we look at the number of ways that a given positive integer
n can be represented as a sum of four squares i.e. the number of solutions of
the equation

x2
1 + x2

2 + x2
3 + x2

4 = n,
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with x1, x2, x3, x4 ∈ N. This number is usually denoted by r4(n).

We can write the above equation in the form

N(x) = n

for
x = x1 + x2i+ x3j + x4k.

The number we are looking for is, thus, equal to the number of Lipschitz
integers of norm n ∈ N.

Let 2r be the highest power of 2 that divides n. Hence we can write
n = 2rm, where m is odd. We can see the two cases

• If r = 0, then n = m is odd. By Proposition 3.2, out of the 24
right (left) associates of any Hurwitz integer of odd norm there is a
unique one that is primary, and therefore in L. The number of primary
quaternions of odd norm m, by Proposition 3.13, is equal to

f(n) =
∑
d|n

d

Each primary quaternion is a Lipschitz integer and multiplying it by
the units ±1,±i,±j,±k yields again a quaternion in L. On the other
hand, multiplying a primary quaternion by the remaining units in H,
yields elements not in L. We therefore have that there are

r4(n) = 8 ·
∑
d|n

d.

Lipschitz integers of norm n, when n is odd.

• If r > 1, then we have that

N(x) = 2rm,
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and, as we have seen before, we can write

x = (1 + i)r · y,

where y ∈ H is odd.

For any quaternion y, we have that x = (1 + i)ry ϵ ∈ L for all 24
units ϵ of H. Moreover, using the fact that exactly one of the right
associates of a given quaternion of odd norm is primary, and that there
are f(m) = ∑

d|m
d primary quaternions of norm m, we get that there are

r4(n) = 24 ·
∑
d|n

d odd

d,

Lipschitz integers of norm n, when n is even.

We have proved:

Theorem 3.14 (Jacobi’s four-square Theorem). The number r4(n) of ways

that a given positive integer n can be represented as the sum of four squares

is equal to

r4(n) =


8 ·
∑
d|n

d, if n is odd

24 ·
∑
d|n

d odd

d, if n is even

3.2 Gordon Pall’s results

In this section we will take a look at some more results from Gordon Pall’s
1940 work [15] on the ring of Lipschitz integers. His work sheds some light
into the factorization of Lipschitz integers. Almost all propositions, theorems
and corollaries can be found on [15]. We adjusted the notations and proofs
to make the readers job easier. Some of these results will be used in the
proof of the “1-3-5 Conjecture”.
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3.2.1 Left multiples

For a primitive Lipschitz integer, we will describe the different left multiples
modulo a rational prime power. Moreover, we will see how many of them
there are. We also look at its left multiples that are pure modulo a prime
power, and show that they are proportional modulo this prime power.

Lemma 3.15. Let t = t0 + t1i+ t2j + t3k be primitive, p is an odd rational

prime and p - t20 + t2α for some α ∈ {1, 2, 3}. No two of the following

p2r quaternions are congruent modulo pr:

(e+ fu)t, e, f = 0, 1, ... , pr − 1, (3.8)

where u = i, if p - t20 + t21; u = j, if p - t20 + t22; and u = k, if p - t20 + t23.

Proof. Assume p - t20 +t21, and suppose that (e1 +f1i)t ≡ (e2 +f2i)t (mod pr).
Putting t = t0 + t1i+ t2j + t3k, this is equivalent to

(e1 − e2)t0 − (f1 − f2)t1 ≡ 0 (mod pr)

(e1 − e2)t1 + (f1 − f2)t0 ≡ 0 (mod pr).

Multiplying the first by t0, the second by t1, and adding the two congruencies
yields

(e1 − e2)(t20 + t21) ≡ 0 (mod pr).

Since p - t20+t21, we get e1 ≡ e2 (mod pr). Similarly we get f1 ≡ f2 (mod pr).
The proof is similar if p - t20 + t22 or p - t20 + t23.

The following is a generalization of Lemma 3.10.

Theorem 3.16. Let p be an odd rational prime, and t ∈ L be primitive,

such that pr | N(t). If u ∈ L runs through all p4r remainders modulo pr, then

ut takes precisely p2r values modulo pr, and each one of these values is taken

precisely p2r.

Proof. We will show that ∃α ∈ {1, 2, 3} such that p - t20 + t2α. Suppose
p | t20 + t2α, ∀α = 1, 2, 3. Then it should divide their sum too, so p | 3t20 + t21 +
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t22 + t23 = 2t20 + N(t). But pr | N(t), so p | N(t), hence we must have p | t20,

and therefore, p | t0. Now from p | t20 + t2α, we get p | tα, α = 1, 2, 3, which is
impossible since t is primitive.

Let λ denote the number of solutions of xt ≡ 0 (mod pr), and µ denote
the number of possible values of ut modulo pr. The number of solutions
xt ≡ wt, for a given representative w, is the same as that of (x− w)t ≡ 0,
hence equals λ. Therefore µλ = p4r. By lemma 3.15, µ ≥ p2r, and since
x = (e + fiα)t̄, e, f from 3.15, satisfies xt ≡ 0, we get that λ ≥ p2r. Thus,
finally λ = µ = p2r.

Corollary 3.17. If pn | Nt, the residues (3.8) in lemma 3.15 represent a

complete set of left multiples of t modulo pn.

Proof. This is obvious from the proof of Theorem 3.16.

Corollary 3.18. Precisely pr of the p2r left multiples of t modulo pr are

pure modulo pr.

Proof. Let α from lemma 3.15 be equal to 1. Then, a left multiple of t will
have the form

(e+ fi)t = (et0 − ft1) + (et1 + ft0)i+ (et2 − ft3)j + (et3 + ft2)k, (3.9)

and it is pure modulo pr if and only if (et0 − ft1) ≡ 0 (mod pr). Now, since
either t0 or t1 is not divisible by p, and assuming without loss of generality
that t1 ̸≡ 0 (mod p), then for each e ∈ {0, 1, ..., pr − 1} there is exactly one
f ∈ {0, 1, ..., pr − 1} such that (et0 − ft1) ≡ 0 (mod pr). Therefore pr of the
left multiples of t pure. The cases for α = 2, 3 are similar.

Theorem 3.19. Let t be primitive, and m | N(t). Then, all left-multiples

ut, which are pure modulo m, are proportional modulo m.

Proof. By the Chinese Remainder Theorem we can reduce the proof to the
case where m = pr, a prime power. By the first paragraph of the proof of
Theorem 3.16, there is an α ∈ {1, 2, 3} such that p - t20 + t2α. Without loss of
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generality, we may assume α = 1. By Corollary 3.18, we get that the pure
modulo pr left multiples of t, are of the form

λe,f ≡ (et1 + ft0)i+ (et2 − ft3)j + (et3 + ft2)k (mod pr),

where
et0 − ft1 ≡ 0 (mod pr).

Assuming, again without loss of generality, that t1 ̸≡ 0 (mod p), we have

λe,f ≡ e(t1i+ t2j + t3k) + f(t0i− t3j + t2k)

≡ e(t1i+ t2j + t3k) + et0/t1(t0i− t3j + t2k)

≡ e [(t1i+ t2j + t3k) + t0/t1(t0i− t3j + t2k)] (mod pr).

Hence for e running through 0, pr − 1, we obtain all the pr pure left multiples
of t, and they are clearly proportional modulo pr.

Corollary 3.20. Let v be primitive and pure modulo m, m | N(v), and let

wv be pure modulo m. Then, there exists an integer λ such that wv ≡ λv

(mod m).

Proof. From the proportionality of the pure left multiples v modulo m, and
the fact that v itself is pure.

3.2.2 Right and left divisors

The aim of this chapter is to examine when two quaternions have the same
divisors of a given integer norm. We will give necessary and sufficient
conditions for them to have the same right divisors, the same left divisors
and the same left and right divisors. The result yielding a necessary and
sufficient condition for two quaternions to have the same right and left
divisors of a given norm, will be used in the proof of the 1-3-5 conjecture.
Throughout this section m is an odd integer.
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Lemma 3.21. Let x and y be primitive modulo m, where m ∈ Z, m | N(x),
m | N(y). If x and y have the same right divisors of norm pr, for every pr

dividing m, then x and y have the same right divisors of norm m.

Proof. Let us first prove the claim for m = pq, where p, q are distinct rational
primes. Therefore, we are assuming that x and y have the same right divisors
of norm p and q. Let P be the common right divisor of x and y of norm
p, then we can write x = L1P and y = L2P for some L1, L2 ∈ L. Now,
q | N(L1),N(L2), hence, by Theorem 2.15, we can write L1 = L′

1Q1 and
L2 = L′

2Q2, for some unique up to left associates Q1, Q2 of norm q, and
L′

1, L
′
2 ∈ L. Then, we will have that

x = L′
1Q1P

and
y = L′

2Q2P.

Each of the quaternions Q1P,Q2P have a unique, up to left unit multipli-
cation, right divisor of norm q, call them Q′

1, Q
′
2. Then, Q′

1, Q
′
2 are right

divisors of x, y of norm q as well, and since x and y have the same right
divisors of q we must have that Q′

1 and Q′
2 are left associates.

Therefore we can write
Q1P = P1Q

and
Q2P = P2Q

for some P1, P2 ∈ L of norm p, and Q ∈ L of norm q, a left associate of Q′
1

and Q′
2. From these two equalities we get that

QP̄ = P̄1Q1 = P̄2Q2.

By Theorem 2.15, we get that Q1 and Q2 are left associates, which means
that Q1P and Q2P are left associates. Therefore we have proven that if x
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and y have the same right divisors of norm p and q, then they have the same
right divisors of norm pq.

To finish the proof notice that the whole argument works fine if, instead
of primes, we have powers of primes. This together with a simple induction
argument yields the claim.

Lemma 3.22. The largest rational integer factor of m dividing z ∈ L is not

changed if z is replaced by yz, or zy, for any y ∈ L, where N(y) is coprime

to m.

Proof. Let k be the largest rational integer factor of m that divides z. Then
obviously k | yz. Moreover let k0 > k be the largest integer factor of yz, with
k0 | m. Then, k2

0 | N(yz) = N(y) N(z), and since k0 - N(z), then k0
k | N(y),

which cannot happen, since (N(y),m) = 1.

On the other hand let k be the largest integer factor of yz that divides m.
Then k | ȳyz = N(y)z, therefore we must have k | z, since N(y) is coprime
to m. It is clear that k is the largest divisor of z that divides m, because
otherwise we would have a divisor of yz larger than k.

Lemma 3.23. Let t1, t2, . . . , tf ∈ L have odd prime norm p. Then

t = t1t2 · · · tf is primitive ⇐⇒ titi+1 is primitive ∀i = 1, 2, . . . , f − 1.

Proof. (⇒) let t = t1t2 · · · tf be primitive, and assume that there exists a
j ∈ {1, 2, . . . , f − 1} such that tjtj+1 = qr, for some rational prime q, and
some r ∈ L. Then, we have

t =t1t2 · · · tf

=t1t2 · · · tjtj+1 · · · tf

=t1t2 · · · tj−1 qr tj+2 · · · tf

=qt1t2 · · · tj−1 r tj+2 · · · tf ,

hence t is not primitive, a contradiction.



46 Chapter 3. Hurwitz and Pall on Integral Quaternions

(⇐) For f = 2, t is primitive trivially. Assume that titi+1 is primitive
for i = 1, 2, . . . , f , and assume that t = t1t2 · · · tf is primitive as well. We
will show that x = ttf+1 is primitive.

Assume that x is non-primitive. Then, it can be written as x = yq,
where y ∈ L and q a rational prime. Taking norms, we have N(x) = q2 N(y).
We also have that N(x) = N(t) N(tf+1) = pf+1, so we must have that
q = p. Therefore, we have that x = yp, so ttf+1 = ytf+1tf+1, which yields
t = ytf+1. Hence t(f) and t(f+1) are both right divisors of t of norm p, and
thus, by Theorem 2.15, we must have that tf = utf+1 for some unit u. Thus
t(f)t(f+1) = up, which means that it is not primitive, and contradicts our
assumption.

Remark. Let t1, t2, . . . , tf ∈ L have odd prime norm p. If any titi+1 is not
primitive, then it is of the form up, u a unit; we can remove the factor p
from t = t1t2 · · · tf , absorb the unit u into ti−1 or ti+2, and proceed with the
remaining product of f − 2 factors. We finally obtain t = prt1t2 · · · th, where
t1, t2, . . . , th ∈ L primitive as in the previous lemma, and h = f − 2r.

Lemma 3.24. If x and y are primitive modulo p, and xy ≡ 0 (mod pr),
then pr | N(x) and N(y), and x and ȳ have the same right divisors of norm

pr.

Proof. We have pr | xy, so pr | x̄xy and pr | xyȳ, and since p - x, y, we get
that pr | N(x),N(y). Hence, by Theorem 2.15, there exists z, z′, v, v′, t, t′

x = zz′t, ȳ = v̄v̄′t̄′, where N(t) = N(t′) = pr, N(z′) = pe, N(v′) = pf

(e, f > 0) and N(z) N(v) ̸≡ 0 (mod p). Then we have that

xy = zz′tt′v′v ≡ 0 (mod pr)

Now, since x and y are primitive modulo p, it follows that zz′, z′t and t′v′, v′v

are primitive (mod p). Therefore, by Lemmas 3.22 and the above remark,
we must have that tt′ ≡ 0 (mod pr). Since N(t) = N(t′) = pr, that means
that t and t̄′ must be left associates.
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Theorem 3.25. Let x and y be primitive modulo m. Then,

x and y have the same right divisors of norm m ⇐⇒ xȳ ≡ 0 (mod m).

Proof. (⇒) If x = ut, y = vt, for some t ∈ L, with N(t) = m, then xȳ =
utt̄v̄ = muv ≡ 0 (mod m).
(⇐) By Lemma 3.24, we know that x and y have the same right divisors of
norm pr for all the prime powers pr dividing m. Corollary 3.21 finishes the
proof.

Theorem 3.26. Let x and y be primitive modulo m, m | N(x),N(y). Then,

there exists a factorization m = m1m2, in odd positive integers, such that x

and y have the same left divisors of norm m1, and the same right divisors of

norm m2, if and only if

x · y ≡ 0 (mod m),

where the dot denotes the usual inner product on R4.

Proof. (⇒) Let t′ and t′′ be left and right divisors of x of norm m1 and m2,
respectively. Then x = ut′′, where m1 | N(u), and by the uniqueness in
Theorem 2.15 the left divisor of norm m1 of u, must be t′. Hence there is
a ∈ L, such that x = t′at′′. Similarly, there is b ∈ L, such that y = t′bt′′,
and N(t′) = m1, N(t′′) = m2. We need to show that x · ȳ = 1

2(xȳ + yx̄) ≡ 0
(mod m). We have

xȳ + yx̄ = t′at′′t̄′′b̄t̄′ + t′bt′′t̄′′āt̄′

= t′am1b̄t̄′ + t′bm1āt̄′

= m1t
′(ab̄+ bā)t̄′ = m1t

′(2a · b̄)t̄′

= 2(a · b̄)m1t
′t̄′ = 2(a · b̄)m1m2

= 2(a · b̄)m ≡ 0 (mod m).
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(⇐) Let x ·y ≡ 0 (mod m), therefore xȳ+yx̄ ≡ 0 (mod m). Multiplying
by x on the right yields xȳx ≡ 0 (mod m).

We will first prove the claim for m = pr, so pr | ȳx. Let ps be the highest
power of p such that ps | xȳ. By Theorem 3.25, x and y have the same right
divisors of norm ps. If s = r, then the claim holds trivially. If r > s, let t be
the common right right divisor of x and y with N(t) = ps. Then we can write
x = ut, y = vt. We see that xȳ = psuv̄, and since ps is the highest power of
p that divides xȳ, we get that p - uv̄. Moreover, we have that xȳx = psuv̄x

and pr | xȳx, hence pr−s | uv̄x. By Theorem 3.25 we have that vū and x

have the same left divisors of norm pr−s. These must be the same as the left
divisors of v of norm pr−s, and therefore with those of y. This proves the
theorem if m is a prime power. Corollary 3.21 then, yields the result for any
m ∈ Z.

If x = x0 + x1i + x2j + x3k and y = y0 + y1i + y2j + y3k, then xȳ ≡ 0
(mod pr) is, of course, equivalent to

x0y0 + x1y1 + x2y2 + x3y3 ≡ 0 (mod pr) (3.10)

together with


(x0y1 − x1y0) + (x2y3 − x3y2) ≡ 0 (mod pr)
(x0y2 − x2y0) + (x3y1 − x1y3) ≡ 0 (mod pr)
(x0y3 − x3y0) + (x1y2 − x2y1) ≡ 0 (mod pr)

(3.11)

Theorem 3.27. Let m | N(y), y ∈ L primitive modulo m, and x ∈ L. The

right divisors of y are right divisors of x if and only if, for each prime-power

pr that divides m, (3.10) holds together with (3.11α), where α, like Lemma

3.15, is such that p - y2
0 + y2

α. An analogous result holds for left divisors, with

the +’s in (3.11) changed to −’s.

Proof. Let pr | m. From the proof of theorem 3.16 we know that p - y2
0 + y2

α,
for some α = 1, 2 or 3. We may assume that α = 1. Since pr | N(y), we can
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verify that, modulo pr the following equations hold

(−y0y2 + y1y3)L(3.10) − (y0y3 + y1y2)L(3.111) + (y2
0 + y2

1)L(3.112) = 0
−(y0y3 + y1y2)L(3.10) + (y0y2 − y1y3)L(3.111) + (y2

0 + y2
1)L(3.113) = 0.

(3.12)

Where L(∗) is the left hand side of the congruence ∗. It is easy to see now
that the congruences (3.12) yield that (3.10) together with (3.11α) implies
(3.11) for α = 1, 2 or 3.

Corollary 3.28. Let x be pure and primitive modulo m, and d2 + N(x) ≡

0 ≡ e2 + N(x) (mod m), for some d, e ∈ Z. Then d+ x and e+ x have the

same right divisors of norm m if and only if d ≡ e (mod m).

Proof. (⇒) Assume d + x and e + x have the same right divisors of norm
m. By Theorem 3.25, we have that (d+ x)(e+ x̄) ≡ 0 (mod m). Therefore
de+dx̄+ex+N(x) ≡ 0 (mod m). We also have that x̄ = −x, which together
with N(x) + e2 ≡ 0 (mod m), yields de− dx+ ex− e2 ≡ 0 (mod m), which
is equivalent to (d− e)(e− x) ≡ 0 (mod m). Since x is primitive modulo m,
e − x is primitive mod m as well, and therefore we must have that d ≡ e

(mod m).
(⇐) Assume that d ≡ e (mod m). We need to show that (d+x)(e+x̄) ≡ 0

(mod m). We have (d+ x)(e+ x̄) ≡ de+ ex− dx− e2 ≡ (x− e)(e− d) ≡ 0
(mod m).

Corollary 3.29. Let x, y be pure and primitive modulo m, and assume that

d2 + N(x) ≡ 0 ≡ d2 + N(y) (mod m), for some d ∈ Z. Then d+ x and d+ y

have the same right divisors of norm m if and only if x ≡ y (mod m).

Proof. (⇒) Let d + x and d + y have the same right divisors of norm m.
By Theorem 3.25, we have that (d + x)(d + ȳ) ≡ 0 (mod m). Therefore
d2 + d(x + ȳ) + xȳ ≡ − N(x) + d(x + ȳ) + xȳ ≡ 0 (mod m). We have
that ȳ = −y, and from N(x) + d2 ≡ 0 (mod m) and N(x) = −x2, we get
x2 + d(x− y) − xy ≡ 0 (mod m), and so (d+ x)(x− y) ≡ 0 (mod m). Since
x is primitive mod m, d+ x is primitive mod m as well, and therefore we
must have that x ≡ y (mod m).
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(⇐) Let x ≡ y (mod m). We need to show that (d + x)(d + ȳ) ≡ 0
(mod m). We have (d+x)(d+ ȳ) ≡ d2 +d(x−y)−xy ≡ d2 −xy ≡ x2 −xy ≡

x(x− y) ≡ 0 (mod m).

Corollary 3.30. Let x = x1i + x2j + x3k be pure, v = v1i + v2j + v3k be

pure and primitive modulo m, m | N(v), and m |
3∑

i=1
xivi. Then there exists

an integer x0 such that x0 + x and v has the same right divisors of norm m.

Proof. By Theorem 3.27, and the Chinese Remainder Theorem, it is enough,
for every prime power pr dividing m, to find an x0 ∈ Z that satisfies one of
the following congruences


x0v1 + x2v3 − x3v2 ≡ 0 (mod pr)
x0v2 + x3v1 − x1v3 ≡ 0 (mod pr)
x0v3 + x1v2 − x2v1 ≡ 0 (mod pr).

This always happens because v is primitive, and therefore p - vα for some
α = 1, 2 or 3.

Corollary 3.31. If y ∈ L is primitive modulo m, m | N(y), and x ∈ L, then

x has the right divisors of norm m of y, and the left divisors of norm m of

y, if and only if x ≡ ky (mod m) for some k ∈ Z.

Proof. Let x = x0 + x1i + x2j + x3k and y = y0 + y1i + y2j + y3k. By
Theorem 3.27 we get that x has the right divisors of norm m of y, and the
left divisors of norm m of y, if and only if xfyg ≡ xgyf (mod pr), for all
f, g ∈ {0, 1, 2, 3} for every prime that divides m with multiplicity r. Since y
is primitive modulo m, there exists α ∈ {0, 1, 2, 3} such that p - yα. Then
xg ≡ (xα/yα)yg (mod pr), for all g ∈ {0, 1, 2, 3}, and therefore x ≡ (xα/yα)y
(mod pr).
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Corollary 3.32. If x, y ∈ L are primitive modulo m, m | N(x),m | N(y)
and m |

4∑
i=1

xiyi, then there is a factorization m = m1m2 such that

(x0y1 − x1y0) ≡ ±(x2y3 − x3y2)
(x0y2 − x2y0) ≡ ±(x3y1 − x1y3)
(x0y3 − x3y0) ≡ ±(x1y2 − x2y1)

with all the signs ± taken as + for modulus m1 and as − for modulus m2.

Proof. Direct consequence of Theorems 3.26 and 3.27.





4
The 1-3-5 Conjecture and Related Problems

In this chapter, using quaternion arithmetic in the ring of Lipschitz integers,
we present a proof of Zhi-Wei Sun’s “1-3-5 conjecture” for all integers, and for
all natural numbers greater than a specific constant. This, together with the
computations in [12], which checked the validity of the conjecture up to that
constant, completely proves the 1-3-5 conjecture. We also establish some
variations of this conjecture. This whole chapter is essentially contained in
[13].

Lagrange’s four-square theorem states that any m ∈ N = {0, 1, 2, . . .} can
be written as the sum of four integer squares. In the paper [19, Conjecture
4.3], Zhi-Wei Sun made the following conjecture.

Sun’s 1-3-5 Conjecture. Any m ∈ N can be written as a sum of four

squares, m = x2 + y2 + z2 + t2 with x, y, z, t ∈ N, in such a way that

x+ 3y + 5z is a perfect square.

We present here a proof of that conjecture for all m ∈ N with x, y, z, t ∈ Z,
and a proof for all m ̸≡ 0 (mod 16) greater than a specific constant, with
x, y, z, t ∈ N. This, together with computations done by the authors and
Rogério Reis in [12], which checked the validity of the conjecture up to that
constant, completely proves the 1-3-5 conjecture. Moreover, we establish
some general results that correspond to variations of this conjecture.

While the previous attempts to attack the conjecture used the theory of
quadratic forms, we use the arithmetic of the ring of Lipschitz integers, L

53
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As we have seen in (2.15) and (2.20) Gordon Pall has proven in [15] that for
a Lipschitz integer v which is primitive modulo m, where m | N(v), m is
odd and positive, there is a unique, up to left multiplication by units, right
divisor of v of norm m. This also holds for even m, provided v is actually
primitive and N(v)

m is odd.

For our purposes, uniqueness of factorization is not required. We only
need existence, which means that we may drop the condition for a Lipschitz
integer to be primitive, and we will still have a factorization modeled on any
factorization of its norm, including even factors, because the only primes
dividing 2 in L are, up to associates, 1 + i, 1 + j, and 1 + k, and (1 + i)(a+
bi+ cj + dk) = (a+ bi− dj + ck)(1 + i), with similar relations holding for
1 + j and 1 + k. Moreover, by Jacobi’s 4-square theorem, factors of powers
of 2 are reduced to the factorization of 2 and ±1 ± i± j± k, which can easily
be checked to be, up to associates, products of two of the numbers 1 + i,
1 + j, or 1 + k.

4.1 The general setting

Let a, b, c, d ∈ Z, and m,n ∈ N be given. Let us start by describing conditions
under which one can guarantee the existence of x, y, z, t ∈ Z such that

 x2 + y2 + z2 + t2 = m

ax+ by + cz + dt = n2.
(4.1)

Putting γ = x+ yi+ zj + tk, ζ = a+ bi+ cj + dk ∈ L, these equations
are equivalent to

N(γ) = m (4.2)

γ · ζ = ℜ(γ̄ζ) = n2, (4.3)

where the dot denotes here the usual inner product on R4. If one sets δ = γ̄ζ,
it follows from (4.3) that δ = n2 +Ai+Bj +Ck, for some A,B,C ∈ Z, and
mN(ζ) − n4 = A2 +B2 + C2. By Legendre’s three-square theorem, see [9,
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pp. 293–295], or for more recent proofs see [21] and [1], a necessary condition
for the solvability of (4.1) is that one has

n ≤ 4
√
m N(ζ), (4.4)

and that

m N(ζ) − n4 is not of the form 4r(8s+ 7) for any r, s ∈ N. (4.5)

Assume now, conversely, that conditions (4.4) and (4.5) are satisfied.
Then, again by Legendre’s three-square theorem, there exist A,B,C ∈ Z

such that m N(ζ) − n4 = A2 + B2 + C2. Setting δ = n2 + Ai + Bj + Ck,
one has N(δ) = m N(ζ). It then follows, by the existence of factorizations
modeled on factorizations of the norm in the ring of Lipschitz integers, that
there exists ξ, γ ∈ L such that δ = γ̄ξ and N(ξ) = N(ζ), N(γ) = m. It follows
that γ is a solution of

N(γ) = m (4.6)

γ · ξ = ℜ(γ̄ξ) = n2. (4.7)

This proves the following.

Theorem 4.1. Let m,n, ℓ ∈ N be such that n ≤ 4√mℓ, and assume that

mℓ − n4 is not of the form 4r(8s + 7) for any r, s ∈ N. Then, for some

a, b, c, d ∈ N such that N(a+ bi+ cj + dk) = ℓ, the system

 m = x2 + y2 + z2 + t2

n2 = ax+ by + cz + dt.

has integer solutions.
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Proof. This follows from all that was written above, together with the fact
that one can change the signs of x, y, z, t so as to make a, b, c, d non-negative,
if they are not already so.

A direct consequence of Theorem 4.1 is the following.

Theorem 4.2. Let ζ ∈ L and m,n ∈ N be such that N(ζ)m − n4 is non-

negative and not of the form 4r(8s+ 7), for any r, s ∈ N. If ζ = a+ bi+ cj +
dk ∈ L, then the system

 m = x2 + y2 + z2 + t2

n2 = ax+ by + cz + dt.

has integer solutions whenever

N(ζ) =



1, 3, 5, 7, 11, 15, 23
2g

3 · 2g

7 · 2g

where g is odd and positive.

Proof. Let ℓ ∈ N, define the partition number P4(ℓ) of ℓ into 4 squares to be

P4(ℓ) =
∣∣∣∣∣{a1, a2, a3, a4} ∈ N4 | a1 > a2 > a3 > a4,

4∑
i=1

a2
i = ℓ

∣∣∣∣∣
By Theorem 4.1, it suffices to guarantee that P4(N(ζ)) = 1, for all ζ ∈ L,
with N(ζ) running through all the values in the statement, which is true by
[11, Theorem 1].

4.2 The 1-3-5 conjecture

Let us now consider the existence of integer solutions for the system:

 m = x2 + y2 + z2 + t2

n2 = x+ 3y + 5z.
(1-3-5)
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Since the only possible Lipschitz integers of norm 35, up to the signs and the
order of the coefficients, are 1 + 3i+ 5j and 1 + 3i+ 3j + 4k, Theorem 4.1
immediately yields the following result.

Proposition 4.3. Let n ≤ 4√35m be such that 35m− n4 is not of the form

4r(8s + 7), for any r, s ∈ N. Then either the system (1-3-5) has integer

solutions, or the system

 m = x2 + y2 + z2 + t2

n2 = x+ 3y + 3z + 4t.
(1-3-3-4)

has integer solutions.

Define R(P ) to be the set of all Lipschitz integers obtained from P ∈ L,
by permuting and changing the signs of its coordinates. For α, α′ ∈ L, we
say that α′ is in the same decomposition class as α, and write α′ ∼ α, if
R(α′) = R(α).

From now on, we set α = 1 + 3i + 5j and β = 1 + 3i + 3j + 4k. In
sections 4, 5, 6 and 7 we will prove that the system (1-3-5) always has a
solution for all m ∈ N with x, y, z, t ∈ Z. The natural solution case will be
handled in the last section. The biggest part of this paper will be focused on
proving the following theorem.

Theorem 4.4. Let m,n ∈ N be such that 35m− n4 is non-negative and not

of the form 4r(8s+ 7), for any r, s ∈ N. Then

i) If m ≡ 0 (mod 3), then the system (1-3-5) has integer solutions when-

ever n ̸≡ 0 (mod 3) and n ̸≡ 0 (mod 5), i.e. (n, 15) = 1.

ii) If m ≡ 1 (mod 3), then the system (1-3-5) has integer solutions when-

ever n ≡ 0 (mod 3) such that n ̸≡ 0 (mod 5).

iii) If m ≡ −1 (mod 3), then the system (1-3-5) has integer solutions when-

ever n ̸≡ 0 (mod 3), n ̸≡ 0 (mod 5) and n ̸≡ 0 (mod 7), i.e. (n, 105) =
1.
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Since the condition “35m − n4 is not of the form 4r(8s + 7), for any
r, s ∈ N” holds often enough, this theorem shows more than what the integer
case of the 1-3-5 conjecture asserts. As it is suggested from the statement of
the theorem, we need to work modulo 3, 5 and 7.

Let us now establish the framework within which we are going to work.
We assume that m,n ∈ N are such that 35m− n4 is non-negative and not of
the form 4r(8s+ 7), for any r, s ∈ N. Like in the first section, this implies
that there exist A,B,C ∈ N such that 35m− n4 = A2 +B2 + C2. Letting
δ = n2 +Ai+Bj + Ck ∈ L, we have that N(δ) = 35m, and therefore there
exist ζ, γ ∈ L with N(ζ) = 35 and N(γ) = m, such that δ = γζ. Then

N(ζ) = 35, and so ζ ∼ β or ζ ∼ α.

If ζ ∈ R(α) then the system (1-3-5) has integer solutions and we are
done. If ζ ∈ R(β), then there exist a γ′, obtained from appropriate sign
and coefficient changes of γ, with N(γ′) = N(γ) = m, such that ℜ(γ′β) =
ℜ(γζ) = n2. Therefore, we may assume, without loss of generality, that
ζ = β. Let γ = x− yi− zj − tk. Performing the multiplication γβ yields

δ = (x+3y+3z+4t)+(3x−y−4z+3t)i+(3x+4y−z−3t)j+(4x−3y+3z−t)k,

so we have, for future reference:



n2 = x+ 3y + 3z + 4t
A = 3x− y − 4z + 3t
B = 3x+ 4y − z − 3t
C = 4x− 3y + 3z − t.

(4.8)

We now point out the main idea behind what is going to be done in the
next sections.
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Remark 4.1. For any ρ ∈ L\{0}, one has ℜ(ρ−1δρ) = ℜ(δ) and N(ρ−1γρ) =

N(γ). Since, for any σ ∈ L \ {0},

ρ−1δρ = ρ−1γβρ = ρ−1γσ σ−1βρ,

we see that if one can find ρ, σ ∈ L\{0} such that σ−1βρ = α′ and ρ−1γσ ∈ L,

with α′ ∈ R(α) and N(ρ) = N(σ), then from a solution (x, y, z, t) ∈ Z4 for

(1-3-3-4) one can obtain a solution in Z4 for (1-3-5).

We will be using this in the case where N(ρ) = N(σ) = p, an odd prime,
and in order to apply this remark, we will need conditions on γ that guarantee
ρ−1γσ ∈ L, which is the same as ρ̄γσ ≡ 0 (mod p). Those conditions can
be obtained by using Corollary 8 in [15], which will be here applied in the
following way. Since ρ̄γσ and ρ̄σ have the same right and left divisors of
norm p, when ρ̄σ is primitive modulo p, Pall’s result implies that there
is a kγ ∈ Z such that ρ̄γσ ≡ kγ ρ̄σ (mod p). But then, taking the conjugate
congruence, adding both, and using the fact that ℜ(rs) = ℜ(sr) for all
r, s ∈ L, one gets

γ · ρσ̄ ≡ kγ ρ · σ (mod p).

When ρ · σ ̸≡ 0 (mod p), which is the same as p - ℜ(ρ̄σ), then one has
kγ ≡ γ·ρσ̄

ρ·σ (mod p), and one concludes that

ρ̄γσ ≡ 1
ρ · σ

(γ · ρσ̄) ρ̄σ (mod p), for all γ ∈ L. (4.9)

If ρ · σ ≡ 0 (mod p), then γ · ρσ̄ ≡ 0 (mod p) for all γ ∈ L, and in
particular ρσ̄ ≡ 0 (mod p). Hence σ = uρ, for some u ∈ L∗. Before dealing
with this possibility, consider the case when ρ̄σ is not primitive modulo
p. This means that σ is a right associate of ρ, and so we can assume, without
loss of generality, that σ = ρ. Using coordinates, we can explicitly see that,
also in this case, ρ̄γρ has proportional coordinates modulo p, and thus, as
above, there are ε, δ ∈ L such that ρ̄γρ ≡ (γ · ε) δ (mod p), for all γ ∈ L.
If ρ = a+ bi+ cj + dk, with c2 + d2 ̸= 0, it can be seen that one can take
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δ = (a2 + b2)i+ (bc− ad)j + (ac+ bd)k, and ε can then be easily computed
for any given ρ. Finally, if ρ = a+ bi, with b ̸= 0, one can take δ = 2aj− 2bk
and ε = aj + bk.

Finally, for the case σ = uρ, with u ∈ L∗, one applies what we just saw
to γu, to obtain ε, δ such that ρ̄γσ = ρ̄γuρ ≡ (γu · ε) δ ≡ (γ · εū) δ (mod p).

Thus, the following holds:

Proposition 4.5. Let p be an odd rational prime. Given ρ, σ ∈ L with

norm p, then there are ε, δ ∈ L such that ρ̄γσ ≡ (γ · ε) δ (mod p), for all

γ ∈ L. Moreover, for any ρ, σ, one can easily compute ε, which then yields

the following criterion:

ρ−1γσ ∈ L ⇐⇒ γ · ε ≡ 0 (mod p).

From now on, we assume that (x0, y0, z0, t0) ∈ Z4 is a solution of the
system (1-3-3-4), we set γ0 = x0 − y0i− z0j − t0k, and we are going to show
that from this solution one can construct a solution for the (1-3-5) system,
by using Remark 4.1 and Proposition 4.5.

4.3 Using primes in L with norm 3

Let ρ = 1 + i− j. One can easily check that

βρ = σα′, (4.10)

where σ = 1 + i+ j, α′ = 5 + 3i+ j ∈ R(α), and that

ρ−1γ0 σ ∈ L ⇐⇒ x0 − z0 − t0 ≡ 0 (mod 3).

Thus, since (x0, y0, z0, t0) ∈ Z4 is a solution of (1-3-3-4), it follows by Re-
mark 4.1 that when this congruence holds, ρ−1γ0 σ yields a solution of
(1-3-5).
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Now, there are 4 right non-associated primes above 3, and for the ones
other than ρ1 = 1 + i− j, multiplying by β on the left yields:

β(1 − i− j) = (1 + j + k)(3 − 5j + k) (4.11)

β(1 + i+ j) = (1 − j + k)(−3 + 4i+ j + 3k) (4.12)

β(1 − i+ j) = (1 + i+ k)(3 − i+ 4j + 3k). (4.13)

Using (4.11) instead of (4.10), and repeating the same argument, we get
that, if x0 − y0 − t0 ≡ 0 (mod 3), then the system (1-3-5) has an integer
solution; using (4.12) for x0 + y0 − t0 ≡ 0 (mod 3), one obtains yet another
integer solution for the system (1-3-3-4); and using (4.13) for x0 +z0 − t0 ≡ 0
(mod 3), one gets again another integer solution for the system (1-3-3-4). In
the last two cases we obtain no direct information for the solvability of the
system (1-3-5), but the extra solutions we get, using (4.12) and (4.13), for
the system (1-3-3-4) are going to prove instrumental for our proof. Later on
we will need to write these extra solutions in terms of x0, y0, z0, t0. For now,
we note that the above discussion has proved the following.

Proposition 4.6. Let m,n ∈ N be such that 35m− n4 is non-negative and

not of the form 4r(8s+7), for any r, s ∈ N. For a solution (x0, y0, z0, t0) ∈ Z4

of the system (1-3-3-4), if either of the following holds:

i) x0 − y0 − t0 ≡ 0 (mod 3), or

ii) x0 − z0 − t0 ≡ 0 (mod 3),

then the system (1-3-5) has an integer solution.

4.4 Using primes in L with norm 5

Much like as we did in the previous section, where we used the primes above
3 to see that a solution (x0, y0, z0, t0) ∈ Z4 for the system (1-3-3-4) either
yields conditions for the solvability of the system (1-3-5), or another solution
of the system (1-3-3-4), here we will use the primes above 5 to do something



62 Chapter 4. The 1-3-5 Conjecture and Related Problems

analogous, and we will actually calculate the new solutions for the system
(1-3-3-4), since we will need to use those explicit expressions.

Taking representatives of all the six primes of norm 5, up to right asso-
ciates, and multiplying by β on the left, we get

β(1 + 2i) = (j − 2k)(3 − 4i+ 3j − k)

β(1 + 2j) = (2 + i)(−3 − i+ 4j + 3k)

β(1 − 2k) = (1 − 2i)(3 + 3i+ j + 4k)

β(1 − 2i) = (2 + i)(3 − i+ 5k)

β(1 − 2j) = (−1 + 2i)(3 − 5i− j)

β(1 + 2k) = (j − 2k)(−3 + 5j − k).

For δ = γ0β, we then see that

(1 + 2i)−1δ(1 + 2i) = [(1 + 2i)−1 γ0 (j − 2k)](3 − 4i+ 3j − k)

(1 + 2j)−1δ(1 + 2j) = [(1 + 2j)−1 γ0 (2 + i)](−3 − i+ 4j + 3k)

(1 − 2k)−1δ(1 − 2k) = [(1 − 2k)−1 γ0 (1 − 2i)](3 + 3i+ j + 4k)

(1 − 2i)−1δ(1 − 2i) = [(1 − 2i)−1 γ0 (2 + i)](3 − i+ 5k)

(1 − 2j)−1δ(1 − 2j) = [(1 − 2j)−1 γ0 (−1 + 2i)](3 − 5i− j)

(1 + 2k)−1δ(1 + 2k) = [(1 + 2k)−1 γ0 (j − 2k)](−3 + 5j − k).

(4.14)

Denoting the expressions in the brackets by γi, i = 1, . . . , 6, respectively,
one sees that if any of γ4, γ5, γ6 is in L, then the system (1-3-5) would have
integer solutions by Remark 4.1, and we are done. One has, using (4.8) and
Proposition 4.5,

γ4 ∈ L ⇐⇒ t0 ≡ 3z0 (mod 5) ⇐⇒ n2 ≡ 2A (mod 5)
γ5 ∈ L ⇐⇒ x0 − 2y0 + 2z0 + t0 ≡ 0 (mod 5) ⇐⇒ A ≡ 0 (mod 5)
γ6 ∈ L ⇐⇒ x0 − 2y0 + z0 − 2t0 ≡ 0 (mod 5) ⇐⇒ n2 ≡ −A (mod 5).

Therefore, we just proved the following.
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Proposition 4.7. Let m,n ∈ N be such that 35m− n4 is non-negative and

not of the form 4r(8s + 7), for any r, s ∈ N. If (x0, y0, z0, t0) ∈ Z4 is a

solution of the system (1-3-3-4), and A = 3x0 − y0 − 4z0 + 3t0 satisfies any

one of the following congruences:

(i) A ≡ 0 (mod 5),

(ii) n2 ≡ 2A (mod 5),

(iii) n2 ≡ −A (mod 5),

then the system (1-3-5) has an integer solution.

We notice that if (x0, y0, z0, t0) is a solution of the system (1-3-3-4), then
(x0, z0, y0, t0) is a solution of it as well. Therefore we also have:

Corollary 4.8. Let m,n ∈ N be such that 35m−n4 is non-negative and not

of the form 4r(8s+ 7), for any r, s ∈ N. If (x0, y0, z0, t0) ∈ Z4 is a solution

of the system (1-3-3-4) such that any of the following congruences hold:

(i) t0 ≡ 3y0 (mod 5),

(ii) x0 + 2y0 − 2z0 + t0 ≡ 0 (mod 5),

(iii) x0 + y0 − 2z0 − 2t0 ≡ 0 (mod 5),

then the system (1-3-5) has an integer solution.

Let us look at γ1, γ2, γ3 now. Using once more (4.8) and Proposition 4.5,
one gets:

γ1 ∈ L ⇐⇒ y0 ≡ 3x0 (mod 5) ⇐⇒ n2 ≡ −2A (mod 5)
γ2 ∈ L ⇐⇒ x0 − 2y0 − 2z0 − t0 ≡ 0 (mod 5) ⇐⇒ n2 ≡ 0 (mod 5)
γ3 ∈ L ⇐⇒ x0 − 2y0 − z0 + 2t0 ≡ 0 (mod 5) ⇐⇒ n2 ≡ A (mod 5).

Note that for n2 ̸≡ 0 (mod 5), either n2 ≡ ±A (mod 5), n2 ≡ ±2A (mod 5)
or A ≡ 0 (mod 5). We have seen what happens if n2 ≡ −A (mod 5),
n2 ≡ 2A (mod 5) and A ≡ 0 (mod 5), hence we just need to see what
happens on the other two remaining cases:
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• If n2 ≡ A (mod 5), then x0 − 2y0 − z0 + 2t0 ≡ 0 (mod 5), so γ3 ∈ L.
Since

γ3 = x0−2y0+4z0+2t0
5 − 2x0+y0−2z0+4t0

5 i− 4x0+2y0+z0−2t0
5 j + 2x0−4y0−2z0−t0

5 k,

and, according to (4.14), γ3 yields the element β∗ = 3 + 3i+ j + 4k ∈

R(β), it follows that

γ∗ = 4x0+2y0+z0−2t0
5 − 2x0+y0−2z0+4t0

5 i− x0−2y0+4z0+2t0
5 j + 2x0−4y0−2z0−t0

5 k

satisfies ℜ(γ∗β) = ℜ(γ3β
∗) = ℜ(γ0β), and thus γ∗ yields a solution of

(1-3-3-4).

If we denote the coordinates of the conjugate of γ∗ by x1, y1, z1, t1,
using the fact that x0 − 2y0 − z0 + 2t0 = 5κ, for some κ ∈ Z, we have



x1 = x0 − κ

y1 = y0 + 2κ
z1 = z0 + κ

t1 = t0 − 2κ.

(4.15)

• If n2 ≡ −2A (mod 5), then y0 ≡ 3x0 (mod 5), and so γ1 ∈ L. One
then sees, as above, that

ℜ
[(−4x0 + 3y0

5 − 3x0 + 4y0
5 i− z0j − t0k

)
β

]
= ℜ(γβ),

and therefore

(x2, y2, z2, t2) =
(−4x0 + 3y0

5 ,
3x0 + 4y0

5 , z0, t0

)

is another integer solution of the system (1-3-3-4) obtained from the
solution (x0, y0, z0, t0) ∈ Z4. We have y0 = 3x0 + 5λ, for some λ ∈ Z,
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and thus 

x2 = x0 + 3λ
y2 = y0 − λ

z2 = z0

t2 = t0.

(4.16)

is another integer solution of (1-3-3-4).

Now we are ready to prove the following:

Proposition 4.9. Let m,n ∈ N be such that 35m− n4 is non-negative and

not of the form 4r(8s+ 7), for any r, s ∈ N. The following holds:

i) If m ≡ 0 (mod 3), then the system (1-3-5) has integer solutions for all

n ∈ N with (n, 15) = 1.

ii) If m ≡ 1 (mod 3), then the system (1-3-5) has integer solutions for all

n ≡ 0 (mod 3) with 5 - n.

Proof. As above, we may assume the existence of a solution (x0, y0, z0, t0) ∈

Z4 of the system (1-3-3-4). Note that if m ≡ 0 (mod 3) and n2 ≡ 1 (mod 3),
or if m ≡ 1 (mod 3) and n2 ≡ 0 (mod 3), then 35m − n4 ≡ −1 (mod 3).
Therefore A2 +B2 + C2 ≡ −1 (mod 3), and since the squares modulo 3 are
0 and 1, we have that exactly one of the A,B,C is 0 modulo 3, and the other
two are ±1 modulo 3. From (4.8) and for a solution (x0, y0, z0, t0) ∈ Z4 of
(1-3-3-4), we see that



n2 ≡ x0 + t0 (mod 3)
A ≡ −y0 − z0 (mod 3)
B ≡ y0 − z0 (mod 3)
C ≡ x0 − t0 (mod 3).

We now consider all possibilities for the congruence classes of A,B,C modulo
3. In each one of the following cases, one sees that one can use Proposition 4.6
to show that the system (1-3-5) has integer solutions:

• If A ≡ 0 (mod 3) and B ≡ C (mod 3), then it is easy to see that
x0 + 2z0 + 2t0 ≡ 0 (mod 3).
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• If A ≡ 0 (mod 3) and B ≡ −C (mod 3), then x0 + 2y0 + 2t0 ≡ 0
(mod 3).

• If C ≡ 0 (mod 3) and A ≡ B (mod 3), then x0 + 2y0 + 2t0 ≡ 0
(mod 3).

• If C ≡ 0 (mod 3) and A ≡ −B (mod 3), then x0 + 2z0 + 2t0 ≡ 0
(mod 3).

• If B ≡ 0 (mod 3) and A ≡ C (mod 3), then x0 + 2y0 + 2t0 ≡ 0
(mod 3).

There is only one remaining case:

• If B ≡ 0 (mod 3) and A ≡ −C (mod 3), then we have that x0 + y0 +
2t0 ≡ x0 + z0 + 2t0 ≡ 0 (mod 3). Proposition 4.6 does not yield the
claim this time. Instead, we are going to use the results from the
previous section. For n2 ̸≡ 0 (mod 5), we have the following cases:

– If we have that A ≡ 0 (mod 5) or n2 ≡ 2A (mod 5) or n2 ≡

−A (mod 5), by Proposition 4.7, the system (1-3-5) has integer
solutions.

– If n2 ≡ A (mod 5) then the solution (4.15) of the system (1-3-3-4)
satisfies x1 + 2y1 + 2t1 ≡ 2(x0 + z0 + 2t0) ≡ 0 (mod 3). Therefore,
Proposition 4.6 yields the claim.

– If n2 ≡ −2A (mod 5), then the solution (4.16) of the system
(1-3-3-4) satisfies x2 + 2y2 + 2t2 ≡ x0 + y0 + 2t0 ≡ 0 (mod 3).
Therefore, Proposition 4.6 yields the claim again.

The case m ≡ −1 (mod 3) of (4.4) is the only one left to be treated. For
that case, similarly to the above, we can show the following:



4.5. Using primes in L with norm 7 67

Proposition 4.10. Let m,n ∈ N, m ≡ −1 (mod 3), n ̸≡ 0 (mod 3), be

such that 35m − n4 is non-negative and not of the form 4r(8s + 7), for

any r, s ∈ N. Then, either the system (1-3-5) has integer solutions, or if

(x0, y0, z0, t0) ∈ Z4 is a solution of the system (1-3-3-4), we must have either

x0 + y0 + 2t0 ≡ 0 (mod 3) and z0 ≡ 0 (mod 3), or x0 + z0 + 2t0 ≡ 0 (mod 3)
and y0 ≡ 0 (mod 3).

Proof. Let m ≡ −1 (mod 3) and n ̸≡ 0 (mod 3), which means that n2 ≡ 1
(mod 3), then 35m − n4 ≡ 0 (mod 3), so that A2 + B2 + C2 ≡ 0 (mod 3).
Therefore A2 ≡ B2 ≡ C2 ̸≡ 2 (mod 3), and

• If A ≡ B ≡ C (mod 3), then x0 + z0 + 2t0 ≡ 0 (mod 3) and y0 ≡ 0
(mod 3).

• If A ≡ −B ≡ −C (mod 3), then x0 + 2y0 + 2t0 ≡ 0 (mod 3), and
Proposition 4.6 applies.

• If A ≡ B ≡ −C (mod 3), then x0 + 2z0 + 2t0 ≡ 0 (mod 3), and again
Proposition 4.6 applies.

• If A ≡ −B ≡ C (mod 3), then x0 + y0 + 2t0 ≡ 0 (mod 3) and z0 ≡ 0
(mod 3).

In order to complete the proof of the case m ≡ −1 (mod 3) of Theorem
4.4, we need to work modulo 7 as well, since the above methods are not
enough to cover every possibility.

4.5 Using primes in L with norm 7

Let ρ1 = 1+i+j+2k, ρ2 = 1−i−j−2k, ρ3 = 1−i+j−2k, ρ4 = 1+i−j+2k,
ρ5 = 1+i+j−2k, ρ6 = 1−i−j+2k, ρ7 = 1+i−j−2k, and , ρ8 = 1−i+j+2k be
representatives of all the 8 right non-associate primes of norm 7. Multiplying
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them all by β on the left, as we did before for the primes of norm 3 or 5, we
get:

βρ1 = (1 − i+ 2j − k)(−3 − 3i+ 4j + k)
βρ2 = (1 − i+ 2j − k)(3 + i− 4j + 3k)
βρ3 = (2 − i− j + k)(4 + i+ 3j + 3k)
βρ4 = (1 + i− j − 2k)(1 + 3i+ 3j − 4k)
βρ5 = (−2 + i+ j − k)(−i− 5j − 3k)
βρ6 = (−1 − 2i− j − k)(−3 + j − 5k)
βρ7 = (−2 + i+ j − k)(−3i− 5j + k)
βρ8 = (1 + i− j − 2k)(−3 + 5i+ j).

Denoting by σi the corresponding prime above 7 that shows up on the
right side, and setting γ̂i = ρ−1

i γ0σi, one has

ρ−1
1 γ0βρ1 = γ̂1 (−3 − 3i+ 4j + k)

ρ−1
2 γ0βρ2 = γ̂2 (3 + i− 4j + 3k)

ρ−1
3 γ0βρ3 = γ̂3 (4 + i+ 3j + 3k)

ρ−1
4 γ0βρ4 = γ̂4 (1 + 3i+ 3j − 4k)

ρ−1
5 γ0βρ5 = γ̂5 (−i− 5j − 3k)

ρ−1
6 γ0βρ6 = γ̂6 (−3 + j − 5k)

ρ−1
7 γ0βρ7 = γ̂7 (−3i− 5j + k)

ρ−1
8 γ0βρ8 = γ̂8 (−3 + 5i+ j).

(4.17)

If any of the γ̂i for i = 5, 6, 7, 8 is in L, then the system (1-3-5) would
have integer solutions, and we are done. Using (4.8) and Proposition 4.5,
one deduces

γ̂5 ∈ L ⇐⇒ x0 + 2y0 + z0 + t0 ≡ 0 (mod 7) ⇐⇒ A ≡ 0 (mod 7)
γ̂6 ∈ L ⇐⇒ x0 − 2y0 + 3t0 ≡ 0 (mod 7) ⇐⇒ n2 ≡ A (mod 7)
γ̂7 ∈ L ⇐⇒ y0 + 2z0 + 3t0 ≡ 0 (mod 7) ⇐⇒ n2 ≡ −2A (mod 7)
γ̂8 ∈ L ⇐⇒ x0 + y0 − z0 − 2t0 ≡ 0 (mod 7) ⇐⇒ n2 ≡ −4A (mod 7).

Therefore, we have proved the following.
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Proposition 4.11. Let m,n ∈ N be such that 35m − n4 is non-negative

and not of the form 4r(8s+ 7), for any r, s ∈ N. If (x0, y0, z0, t0) ∈ Z4 is a

solution of the system (1-3-3-4), and if any of the following holds:

(i) A ≡ 0 (mod 7)

(ii) n2 ≡ A (mod 7)

(iii) n2 ≡ −2A (mod 7)

(iii) n2 ≡ −4A (mod 7)

then the system (1-3-5) has an integer solution.

Now, let us look at γ̂i, for i = 1, 2, 3, 4. Applying once more (4.8) and
Proposition 4.5, one has:

γ̂1 ∈ L ⇐⇒ x0 + 4z0 + 2t0 ≡ 0 (mod 7) ⇐⇒ n2 ≡ 4A (mod 7)
γ̂2 ∈ L ⇐⇒ x0 − y0 + 2z0 − t0 ≡ 0 (mod 7) ⇐⇒ n2 ≡ 2A (mod 7)
γ̂3 ∈ L ⇐⇒ x0 + 4y0 − 2z0 ≡ 0 (mod 7) ⇐⇒ n2 ≡ −A (mod 7)
γ̂4 ∈ L ⇐⇒ x0 + 3y0 + 3z0 + 4t0 ≡ 0 (mod 7) ⇐⇒ n2 ≡ 0 (mod 7).

If any of the γ̂i for i = 1, 2, 3, 4 is in L, then we will have another solution for
the system (1-3-3-4). We do not care for γ̂4, as the statement of Theorem 4.4
suggests, and we will examine each of the cases γ̂1, γ̂2, γ̂3 ∈ L separately. Note
that if n ̸≡ 0 (mod 7), then we have either n2 ≡ ±A (mod 7), n2 ≡ ±2A
(mod 7), n2 ≡ ±4A (mod 7), or A ≡ 0 (mod 7).

• If γ̂1 ∈ L, then n2 ≡ 4A (mod 7) and x0 + 4z0 + 2t0 ≡ 0 (mod 7),
which means that x0 + 4z0 + 2t0 = 7µ, for some µ ∈ Z. Looking at the
coordinates of γ̂1, rearranging them and changing signs accordingly,
one sees that for

γ∗
1 = 6x0 + 3z0 − 2t0

7 − 3x0 − 2z0 + 6t0
7 i− y0j + 2x0 − 6z0 − 3t0

7 k
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one has ℜ(γ∗
1β) = ℜ(γβ), and hence

(x̂1, ŷ1, ẑ1, t̂1) =
(6x0 + 3z0 − 2t0

7 ,
3x0 − 2z0 + 6t0

7 , y0,
−2x0 + 6z0 + 3t0

7

)

is another integer solution of the system (1-3-3-4), which we can write
as: 

x̂1 = x0 + z0 − µ

ŷ1 = −2z0 + 3µ
ẑ1 = y0

t̂1 = 2z0 + t0 − 2µ.

(4.18)

• If γ̂2 ∈ L, then n2 ≡ 2A (mod 7), and x0 − y0 + 2z0 − t0 ≡ 0 (mod 7),
i.e. x0 −y0 +2z0 − t0 = 7ν, for some ν ∈ Z. As in the previous case, one
shows that for γ∗

2 = 5x0+2y0−4z0+2t0
7 − 2x0+5y0+4z0−2t0

7 i+ 4x0−4y0+z0−4t0
7 j−

2x0−2y0+4z0+5t0
7 k we have that ℜ (γ∗

2β) = ℜ(γβ). Thus, the conjugate of
γ∗

2 provides another integer solution of the system (1-3-3-4). Denoting
its coordinates by x̂2, ŷ2, ẑ2, t̂2, one can see that:



x̂2 = x0 − 2ν
ŷ2 = y0 + 2ν
ẑ2 = z0 − 4ν
t̂2 = t0 + 2ν.

(4.19)

• If γ̂3 ∈ L, then n2 ≡ −A (mod 7), and x0 + 4y0 − 2z0 ≡ 0 (mod 7),
i.e. x0 + 4y0 − 2z0 = 7ξ, for some ξ ∈ Z. As in the previous cases,

γ∗
3 = −2x0 + 6y0 − 3z0

7 + 3x0 − 2y0 − 6z0
7 i− 6x0 + 3y0 + 2z0

7 j − t0k,

satisfies ℜ (γ∗
3β) = ℜ(γβ). Hence, the coordinates of its conjugate,
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x̂3, ŷ3, ẑ3, t̂3, furnish another integer solution of the system (1-3-3-4),
and one has: 

x̂3 = 2y0 − z0 − 2ξ
ŷ3 = 2y0 − 3ξ
ẑ3 = −3y0 + 2z0 + 6ξ
t̂3 = t0.

(4.20)

Now we have everything that we need to prove the following result.

Proposition 4.12. Let m,n ∈ N be such that 35m− n4 is non-negative not

of the form 4r(8s+ 7), for any r, s ∈ N. When m ≡ −1 (mod 3) the system

(1-3-5) has integer solutions for all n ∈ N with (n, 105) = 1.

Proof. Let A ∈ Z from (4.8). We see that for all n ∈ N such that n2 ̸≡ 0
(mod 7), we necessarily have one of the following: n2 ≡ ±A (mod 7), n2 ≡

±2A (mod 7), n2 ≡ ±4A (mod 7), or A ≡ 0 (mod 7). Therefore, we have:

• If either A ≡ 0 (mod 7), n2 ≡ A (mod 7), n2 ≡ −2A (mod 7), or
n2 ≡ −4A (mod 7), then Proposition 4.11 says that the system (1-3-5)
has an integer solution.

• If n2 ≡ −A (mod 7), then the solution x̂3, ŷ3, ẑ3, t̂3 from (4.20) satisfies
x̂3 +2ẑ3 +2t̂3 ≡ x0 +z0 +2t0 (mod 3), and x̂3 +2ŷ3 +2t̂3 ≡ x0 +y0 +2t0
(mod 3), therefore, Proposition 4.10 and Proposition 4.6 yield the result.

• If n2 ≡ 4A (mod 7), then the solution x̂1, ŷ1, ẑ1, t̂1 from (4.18) satisfies
x̂1 + 2ŷ1 + 2t̂1 ≡ 2(x0 + z0 + 2t0) (mod 3), and x̂1 + 2ẑ1 + 2t̂1 ≡

2(x0 +y0 +2t0) (mod 3), so again Proposition 4.10 and Proposition 4.6
yield the result.

• If n2 ≡ 2A (mod 7), then x0 − y0 + 2z0 − t0 ≡ 0 (mod 7), so x0 −

y0 + 2z0 − t0 = 7ν, for some ν ∈ Z. We are going to check when
the solution (4.19) satisfies the solvability conditions modulo 5 of
Proposition 4.7 and Corollary 4.8. Let Â = 3x̂2 − ŷ2 − 4ẑ2 + 3t̂2 be the
corresponding A for the solution x̂2, ŷ2, ẑ2, t̂2. If either Â ≡ 0 (mod 5),
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n2 ≡ 2Â (mod 5), or n2 ≡ −Â (mod 5) holds, then, by Proposition 4.7,
we are done. So we just need to check the following two cases:

– If n2 ≡ Â (mod 5), then x̂2 − 2ŷ2 − ẑ2 + 2t̂2 ≡ 0 (mod 5). There-
fore, x0 − 2y0 − z0 + 2t0 ≡ −2ν (mod 5). We also have that
x0 − y0 + 2z0 − t0 = 7ν ≡ 2ν (mod 5), and therefore we obtain
x0 + y0 − 2z0 − 2t0 ≡ 0 (mod 5). Corollary 4.8 then yields the
result.

– If n2 ≡ −2Â (mod 5), then ŷ2 ≡ 3x̂2 (mod 5), which implies that
y0 + 2x0 ≡ 2ν (mod 5). This together with x0 − y0 + 2z0 − t0 ≡

2ν (mod 5) yields x0 + 2y0 − 2z0 + t0 ≡ 0 (mod 5). Therefore,
Corollary 4.8 yields the result again.

Proposition 4.9 and Propostion 4.12 combined make for Theorem 4.4.

4.6 Integer solutions

For m ∈ N, we set Sm =
{
n ∈ N : 35m− n4 > 0

}
, and it will also be

convenient to set Tm =
{
n ∈ Sm : 35m− n4 is a sum of 3 squares

}
.

Lemma 4.13. If m ̸≡ 0 (mod 16), then Tm contains either all odd numbers

of Sm, or all even numbers of Sm.

Proof. Simple congruence arguments easily show the following:

m ≡ 1, 3, 7 (mod 8) ⇒ 2N ∩ Sm ⊆ Tm,

m ≡ 2, 4, 5, 6 (mod 8) ⇒ (1 + 2N) ∩ Sm ⊆ Tm,

m ≡ 8 (mod 16) ⇒ 2N ∩ Sm ⊆ Tm.

Lemma 4.14. If m ̸≡ 0 (mod 16) and if A is a subset of Sm containing

at least 10 consecutive numbers, then there is at least one n ∈ A ∩ Tm that

satisfies 3 | n and 5 - n, and another n ∈ A ∩ Tm such that (n, 105) = 1.



4.6. Integer solutions 73

Proof. Consider the classes modulo 15 written in a circle as follows.

014 1
13 2

12 3
11 4

10 5
9 6

8 7

The colors have the following meaning: red and blue represent different
parities, but not necessarily the parity of the number in the figure — if
one adds a multiple of 15, the parities either remain the same or switch —,
and only residues that are divisible by 3 but not by 5 are colored. Then,
in order to apply the previous lemma to guarantee that in a certain set of
consecutive numbers there is at least one divisible by 3 but not by 5, one just
needs to ensure that the set must contain both a blue and a red residue. By
inspection of the figure, one sees that, actually, one only needs 9 consecutive
numbers (the worst cases are the sequences starting at 10 and ending at 3,
and starting at 13 and ending at 6).

For the second statement, one must work modulo 105. Again, imagine
all the classes modulo 105 in a circular, or periodic arrangement. Here we
represent them in five lines, and the reader should imagine the number 104
connected back to the beginning, and only the residues that are coprime to
105 are shown, the other being represented by a dot.

· 1 2 · 4 · · · 8 · · 11 · 13 · · 16 17 · 19 ·
· 22 23 · · 26 · · 29 · 31 32 · 34 · · 37 38 · · 41
· 43 44 · 46 47 · · · · 52 53 · · · · 58 59 · 61 62
· 64 · · 67 68 · · 71 · 73 74 · 76 · · 79 · · 82 83
· · 86 · 88 89 · · 92 · 94 · · 97 · · · 101 · 103 104

Again, a simple inspection shows that 10 consecutive numbers suffice to
guarantee at least a blue and a red residue (the worst cases are the sequences
starting at 2 and ending at 11, and starting at 95 and ending with 104).

We have that |Sm| > 10 if 4√35m > 10, which is equivalent to m >

286. Therefore, from Theorem 4.4, it follows that the system (1-3-5) has
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integer solutions for all m ̸≡ 0 (mod 16) and m > 286. Since it is easy
to check that this system has solutions for all m up to 286, and since a
solution (x0, y0, z0, t0) ∈ Z4 for that system for some m, yields the solution
(4x0, 4y0, 4z0, 4t0) ∈ Z4 for 16m, a simple descent argument establishes the
following result.

Theorem 4.15. Any m ∈ N can be written as x2 + y2 + z2 + t2 with

x, y, z, t ∈ Z such that x+ 3y + 5z is a square. Moreover, for m ∈ N, with

16 - m one can choose this square to be one of 1, 4, 9, or 36.

Proof. It only remains to prove the last statement, which follows from the
fact that, when 6 ∈ Sm, i.e. when m ≥ 38, by Lemma 4.13, Tm either
contains {1, 3, 5} or {2, 4, 6}. Thus, for m ≡ 0,−1 (mod 3) one can choose,
in Theorem 4.4, either n = 1 or n = 2; for m ≡ 1 (mod 3), either n = 3 or
n = 6.

Note that if we do not require 16 - m then the square will be on the set

{4rs2 : r ∈ 2N & s ∈ {1, 2, 3, 6}}.

In Conjecture 4.5(ii) of the paper [20], Zhi-Wei Sun conjectured that any
n ∈ N can be written as x2 + y2 + z2 + t2 with x, y, z, t ∈ N such that
| x + 3y − 5z |∈ {4r : r ∈ N}. Theorem 4.15 provides an advance towards
this conjecture.

4.7 Natural Solutions

Theorem 4.16. For m ∈ Z not divisible by 16 and sufficiently large

(namely m > 1.05104 × 1011), there exists at least one n ∈
[

4√34m, 4√35m
]

such that the system (1-3-5) has solutions in N.
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Proof. Firstly, we note that there is a constant c ∈ R such that for m ≥ c

the interval
[

4√34m, 4√35m
]

contains at least 10 consecutive integers. We
can easily calculate c:

4√35m− 4√34m ≥ 10 ⇐⇒ m ≥
( 10

4√35 − 4√34

)4
≃ 105 103 560 126.8026.

From Lemma 4.14 we know that, for m > c, the interval contains an n ∈ N

such that 35m − n4 is a sum of 3 squares and m,n satisfy the conditions
of Theorem 4.4. It then follows that there exist A,B,C ∈ Z such that
δ = γα = n2 +Ai+Bj + Ck ∈ L, for some γ = x− yi− zj − tk ∈ L, with
α = 1 + 3i+ 5j, and N(δ) = 35m. We then have that

δ = (x+ 3y + 5z) + (3x− y + 5t)i+ (5x− z − 3t)j + (5y + 3z − t)k.

Therefore we must have that

n2 = x+ 3y + 5z
A = 3x− y + 5t
B = 5x− z − 3t
C = −5y + 3z − t.

(4.21)

Solving (4.21) yields 

x = 3A+5B+n2

35

y = −A−5C+3n2

35

z = −B+3C+5n2

35

t = 5A−3B−C
35 .

Note that if (x, y, z, t) is a solution of (1-3-5), then (x, y, z,−t) is a solution
of it as well. Therefore a sufficient condition to have a solution of (1-3-5) in
N is: 

n2 > −3A− 5B
3n2 > A+ 5C
5n2 > B − 3C.

(4.22)
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Now, from the Cauchy-Schwartz inequality we can see that

(3|A| + 5|B|)2 6 (32 + 52)(A2 +B2) 6 34 (A2 +B2 + C2) = 34 (35m− n4).

If n2 >
√

34 (35m− n4), then n2 > −3A − 5B, and so x > 0. Similarly
one can show that if 3n2 >

√
26 (35m− n4), then y > 0, and if 5n2 >√

10 (35m− n4), then z > 0. Hence n2 >
√

34 (35m− n4) is a sufficient
condition for x, y, z ∈ N. The last condition is equivalent to n > 4√34m.

Finally, Rogério Reis, from the department of Computer Science of the
University of Porto, and a researcher at CMUP, wrote a very efficient C
program, implementing ideas by the authors and suggestions made by Zhi-
Wei Sun, that checked that all natural numbers up to 105 103 560 126, except
for the multiples of 16, do have a 1-3-5 representation. These verification
is reported in [12]. Qing-Hu Hou computation mentioned in [22] was also
rechecked, i.e. it was verified that Sun’s 1-3-5 Conjecture holds for all numbers
up to 1010. Since 105 103 560 126

16 < 1010, a simple decent argument completes
the proof of the 1-3-5 conjecture. Therefore, we can now state the following.

Main Theorem. 4.1. Any natural number can be written as a sum of four

squares, x2 + y2 + z2 + t2 with x, y, z, t ∈ N, in such a way that x+ 3y + 5z
is a perfect square.

As a final remark, we note that what one would naturally call the 1-3-3-4
conjecture is not true. That is, it is not true that every natural number m can
be written as a sum of four squares, m = x2+y2+z2+t2, so that x+3y+3z+4t
is a perfect square. For example the numbers 3, 4, 7, 8, 22, 23, 31, 42, 61,
95, 148, 157 and 376 do not have such a representation. Computations seem
to suggest that, except for these thirteen numbers and all its multiples by
powers of 16, all other numbers do have a 1-3-3-4 representation.



5
Metacommutation in H and L

Although the rings of Hurwitz and Lipschitz integers are not commutative,
they do nevertheless have a very interesting property, called metacommuta-
tion, that is directly linked with Theorems 2.11 and 2.15. In this chapter we
will define metacommutation and its generalization in the ring of Hurwitz
integers, but everything works in the ring of Lipschitz integers as well.

We remind the reader that Theorem 2.11 implies that if we want to
investigate all possible prime factorizations of a Hurwitz quaternion, then
we need to look at all possible factorizations of its norm. Let us focus on the
particular case of a Hurwitz integer that is a product of two Hurwitz primes.

Let p and q be rational primes and Q a Hurwitz prime of norm q. Then
from Theorem 2.11, we have that for every Hurwitz prime P of norm p, we
can find primes Q′, P ′ ∈ H of norms q, p, respectively, satisfying

PQ = Q′P ′, (5.1)

and the pair (Q′, P ′) is unique up to unit-migration. This process of swapping
the primes is called metacommutation.

Given P1, P2 ∈ H, define an equivalence relation ∼ by

P1 ∼ P2 if and only if ∃u ∈ H∗ : P1 = uP2.

77
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Denote the equivalence class of P , which is the set of left associates of P ,
by [P ]. This class contains 24 elements, since there are 24 units in H. Let
Πp be the set of these left associate classes of Hurwitz primes lying above
the prime p. By Theorem 3.11, there are exactly p+ 1 of these classes that
correspond to the p+ 1 primary primes of norm p.

Definition 5.1. Let P, P ′ be two Hurwitz primes of norm p. The map

µQ : Πp → Πp

[P ] 7→ [P ′],

where P ′ is obtained from P as in (5.1), is called the metacommutation
map by Q of the primes of norm p.

Proposition 5.2. Let P, P ′ be two Hurwitz primes of norm p. Then,

µQ : Πp → Πp

is a permutation of the p+ 1 primes lying above p.

Proof. We know that P ′ is unique up to left multiplication by a unit. Also,
from (5.1), is obvious that replacing P with a left associate has no effect on
P ′, therefore µQ is well defined.

Now, assume that there is P1, P2 ∈ H such that P1Q = Q′P and P2Q =
Q′′P , then Q̄′P1 = PQ̄ = Q̄′′P2. By Theorem 2.11, we have that P1 and P2

are left associates, and therefore µQ is injective, and since it is defined on a
finite set, it is a permutation.

The main result on the metacommutation map is the following theorem.

Theorem 5.3 (Cohn and Kumar). The sign of the metacommutation map

µQ is the quadratic character
(q
p

)
of q modulo p.

If p = 2, or if Q is congruent to a rational integer modulo p, then µQ is

the identity permutation. Otherwise it has 1 +
(Tr(Q)2 − 4q

p

)
fixed points.
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There are two papers that prove the above theorem, namely the papers
[2] and [6].

From now on we will call the cycles of µQ that have length greater than
1, i.e. that are not made by a single fixed point, nontrivial cycles. Using
results of the above papers it is not very hard to prove the following.

Proposition 5.4. The nontrivial cycles of µQ have length 2 if and only if

Q is pure modulo p.

Proof. Let Q = a+ bi+ cj + dk and q = N(Q). From [2], we know that we
can think of µQ as the left action of the matrix

φQ = 1
q


a2 + b2 − c2 − d2 2ad+ 2bc −2ac+ 2bd

−2ad+ 2bc a2 − b2 + c2 − d2 2ab+ 2cd
2ac+ 2bd −2ab+ 2cd a2 − b2 − c2 + d2


on the points of the conic Cp = {[x : y : z] ∈ P2(Fp) | x2 + y2 + z2 = 0}.

If Q is pure modulo p, then a ≡ 0 (mod p), therefore φQ becomes sym-
metric, and since it is orthogonal as well, we must have that φ2

Q = I in Fp.
This means that µQ can not have a nontrivial cycle of length greater than 2.

If the nontrivial cycles of µQ have length 2, then φ2
Q fixes every point of

Cp, or to put it differently we have that

(φ2
Q − I)v = 0,

for all v ∈ Cp. Now if Cp contains three linearly independent vectors then
this would mean that φ2

Q − I = 0 in Fp.
Choose a, b ∈ Fp such that a2 + b2 + 1 ≡ 0 (mod p), and notice that

(1, a, b), (b, 1, a), and (a, b, 1) are 3 distinct points in Cp. The determinant of
the matrix that has these vectors as columns equals D1 = a3 +b3 −3ab+1. If
one considers the vectors (1, a, b), (b,−1, a), (a, b,−1), that are also in Cp then
the respective determinant is D2 = a3 + b3 + ab+ 1. Then, we claim that at
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least one of D1 and D2 is non-zero in Fp. Indeed, let D1 ≡ D2 ≡ 0 (mod p),
then 2ab ≡ 0 (mod p), and so either a ≡ 0 (mod p) or b ≡ 0 (mod p). We
can assume, without loss of generality, that b ≡ 0 (mod p). Then a2 + 1 ≡ 0
(mod p). But, D1 ≡ 0 implies a3 + 1 ≡ 0 (mod p), from which it follows
that a3 ≡ a2 (mod p), and so a ≡ 1 (mod p), and then 2 ≡ 0 (mod p), a
contradiction. Therefore (D1, D2) ̸≡ (0, 0) (mod p), and therefore φ2

Q = I in
Fp..

The characteristic polynomial ofφQ is

χφQ
= x3 − Tr(φQ)x2 + Tr(φQ)x− 1,

and since φQ satisfies it, we have that

φ3
Q − Tr(φQ)φ2

Q + Tr(φQ)φQ − I = 0

using that φ2
Q = I, we get that

(φQ − I)(Tr(φQ) + 1) = 0

in Fp. Therefore, either φQ = I in Fp or Tr(φQ)+1 ≡ 0 (mod p). If φQ = I in
Fp, then all the points are fixed, so all the cycles have length 1, a contradiction
since we are assuming that nontrivial cycles exist. Hence we must have that
Tr(φQ) + 1 ≡ 0 (mod p), and since Tr(φQ) ≡ 4a2

q − 1 (mod p), we finally get
that a ≡ 0 (mod p).

Proposition 5.5. The nontrivial cycles of µQ have length 3 if and only if

N(Q) ≡ Tr(Q)2 (mod p).

Proof. Let again Q ≡ a+ bi+ cj + dk (mod p), N(Q) = q and φQ from the
above proof.
(⇐) If N(Q) ≡ Tr(Q)2 (mod p) then 3a2 ≡ b2+c2+d2 (mod p) ⇐⇒ 4a2 ≡ q

(mod p) ⇐⇒ Tr(φQ) = 0 in Fp. Since φQ satisfies its characteristic
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polynomial we have that

φ3
Q − Tr(φQ)φ2

Q + Tr(φQ)φQ − det(φQ) = 0,

therefore φ3
Q = I in Fp. From Theorem 5.3 in [6] we know that all the

nontrivial cycles have the same length, if this length were equal to 2, then
from the above proposition we would have that φ2

Q = I, hence φQ = I in
Fp. This would mean that there is no cycle with length greater than one, a
contradiction. Therefore we must have that all the nontrivial cycles have
length 3.
(⇒) If the nontrivial cycles of µQ have length 3, then φ3

Q fixes every point of
Cp, therefore like in the previous proof, since there are 3 linearly independent
vectors in Cp, φ3

Q is the identity operator, i.e. φ3
Q = I in Fp. Since φQ

satisfies its characteristic polynomial we have that

φ3
Q − Tr(φQ)φ2

Q + Tr(φQ)φQ − det(φQ) = 0

using that φ3
Q = I, we get that

Tr(φQ)(φ2
Q − φQ) = 0

in Fp. Therefore, either φ2
Q = φQ or Tr(φQ) = 0 in Fp. If φ2

Q = φQ then since
φ3

Q = I, we have that φQ = I in Fp, which means that all the points are
fixed, a contradiction. Hence we must have that Tr(φQ) ≡ 0 (mod p), and
since Tr(φQ) = 4a2

q − 1, we get that 3a2 ≡ b2 + c2 + d2 (mod p).

5.1 Generalization of the metacommutation map

In this section we will define a generalization of the metacommutation map,
in the sense that we will look at metacommutation by a fixed prime R ∈ H

as a permutation of the Hurwitz integers of semiprime norm pq. Remember
that in the previous section we have defined metacommutation as a right



82 Chapter 5. Metacommutation in H and L

action, meaning that we multiplied the primes above p ∈ Z on the right with
a certain prime above Q.

From now on, we will call right metacommutation by the prime
R ∈ H, the map:

µR : ΠL
p −→ ΠL

p

P 7−→ P ′,

where P, P ′ satisfy
P R = R′ P ′ (5.2)

for some R′ ∈ H above r = N(R), and ΠL
p is the set of left associate classes

of the Hurwitz primes above p.
We can similarly define the left metacommutation map. Let ΠR

q be the set
of right associate classes of the Hurwitz primes above q. Define now left
metacommutation as the map

Rµ : ΠR
q −→ ΠR

q

Q 7−→ Q′,

where Q,Q′ ∈ L above the rational prime q, R is from (5.2), and they satisfy

RQ = Q′R′′ (5.3)

for some R′′ ∈ L above r ∈ Z.

Observe that

P R = R′ P ′ ⇐⇒ R̄′ P RR̄ = R̄′R′ P ′R̄ ⇐⇒ R̄′ P = P ′R̄

Which means that
µR̄(P ′) = P (5.4)

Moreover
P R = R′ P ′ ⇐⇒ RP̄ ′ = P̄R′.
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Therefore we have that

P
µR7−−→ P ′ ⇐⇒ P̄ ′ Rµ

7−−→ P̄ .

Hence µR and Rµ have the same cycle structure, since whenever (P1, P2, · · · , Pn)
is a cycle of µR, then (P̄n, P̄n−1 · · · , P̄1) is a cycle of Rµ.

Putting (5.2) and (5.3) together, we get

R′ P ′Q = P RQ = P Q′R′′ (5.5)

The metacommutation maps µR, Rµ induce a permutation of the Hurwitz
integers above pq, that is defined by

RµR : Πpq −→ Πpq

P ′Q 7−→ P Q′,

where P, P ′Q,Q′ from (5.5) and ΠR
pq =

{
PQ |P ∈ ΠL

p , Q ∈ ΠR
q

}
.

Equivalently, we may define RµR as the map RµR : ΠR
pq −→ ΠR

pq such that

RµR(P ′Q) = µR̄(P ′) Rµ(Q)

RµR is indeed a permutation of the integers above pq because:

• RµR is well defined since by the above, P ′Q and any of its right
associates will have the same image under RµR.

• RµR is injective because

RµR(P ′
0Q0) = RµR(P ′

1Q1) ⇐⇒

µR̄(P ′
0) Rµ(Q0) = µR̄(P ′

1) Rµ(Q1).

Now we know that µR̄(P ′
0), µR̄(P ′

1) are both quaternions of norm p,
and again from Theorem 2.11 we must have µR̄(P ′

0) = µR̄(P ′
1) up to

left associates. Now since µR̄ is a permutation we have that P ′
0 = P ′

1.
Similarly we have that Q0 = Q1, hence P ′

0Q0 = P ′
1Q1.
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We can generalize the metacommutation map in another way as well. It is
not hard to see that metacommutation by a Hurwitz integer of the primes
above some prime r ∈ Z, is just a composition of metacommutation maps.
Let P,Q,R ∈ H be Hurwitz primes, then by Theorem 2.11 we have that
there exists P ′, Q′, R′, R′′ ∈ H, such that

RPQ = P ′R′Q = P ′Q′R′′

Therefore we may define

µP Q : ΠL
r −→ ΠL

r

R 7−→ R′′,

And since
µP Q(R) = R′′ = µQ(µP (R)),

We have that
µP Q = µQ ◦ µP .

Note that everything that we did in this section hold in the ring of
Lipschitz integers as well, as it is mentioned at the end of [6].

5.2 A partial answer to the 1-3-5 conjecture

In this section we are going to demonstrate a way to attack problems like
the “1-3-5 conjecture” using metacommutation. In connection to the “1-3-5
conjecture”, we will look at the particular case that a Hurwitz integer has
norm 35, to prove the following.

Proposition 5.6. For all primes r ∈ Z, there exist R,R′ ∈ L of norm equal

to r, such that

Rζ = ζ ′R′,

for some ζ, ζ ′ ∈ L, with N(ζ) = N(ζ ′) = 35, and ζ ̸∼d ζ
′.
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We remind the reader that for α, β ∈ L, we have α ∼d β if and only if
a can be obtained by b with sign and coefficient changes. Before trying to
prove the above we are going to need a couple of technical lemmas.

Lemma 5.7. Let r ∈ Z be a prime greater than 289. Then, there exist

R = R0 + R1i + R2j + R3k ∈ L, with N(R) = r and R0 satisfying any

combination of R2
0 ≡ ±1 (mod 5) and R2

0 ≡ 1, 2, 4 (mod 7).

Proof. For R2
0 ≡ 1 (mod 5) and R2

0 ≡ 1 (mod 7) it is easy to see that at
least one of r−1, r−36 can not be of the form 4k(8s+7). Hence, there exists
b, c, d ∈ Z such that r −R2

0 = b2 + c2 + d2, where R0 = 1, or R0 = 36. The
rest of the cases are handled analogously, but for the sake of completeness,
we write the values of R0 that make the argument work.

• R2
0 ≡ 1 (mod 5) and R2

0 ≡ 2 (mod 7) take R2
0 = 16 or R2

0 = 121

• R2
0 ≡ 1 (mod 5) and R2

0 ≡ 4 (mod 7) take R2
0 = 81 or R2

0 = 256

• R2
0 ≡ −1 (mod 5) and R2

0 ≡ 1 (mod 7) take R2
0 = 64 or R2

0 = 169

• R2
0 ≡ −1 (mod 5) and R2

0 ≡ 2 (mod 7) take R2
0 = 9 or R2

0 = 289

• R2
0 ≡ −1 (mod 5) and R2

0 ≡ 4 (mod 7) take R2
0 = 4 or R2

0 = 144.

Lemma 5.8. Let r > 289 be a prime, and let µR : ΠL
5 −→ ΠL

5 , Rµ : ΠR
7 −→

ΠR
7 be the (right and left) metacommutation maps for the Lipschitz primes

above 5 and 7 respectively. We can always find an R = R0+R1i+R2j+R3k ∈

L, with N(R) = r, such that

(α)µR and Rµ both have 1 fixed point and one cycle of 5 and 7 respectively,

whenever
(
r

5

)
=
(
r

7

)
= 1.

(β)µR has 1 fixed point and a cycle of 5 and Rµ has no fixed points and a

cycle of 8, whenever
(
r

5

)
= 1 and

(
r

7

)
= −1.

(γ)µR has two fixed points and a cycle of 4 and Rµ has 1 fixed point and a

cycle of 7, whenever
(
r

5

)
= −1 and

(
r

7

)
= 1.
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(δ) µR has two fixed points and a cycle of 4 and Rµ has no fixed points and

a cycle of 8, whenever
(
r

5

)
=
(
r

7

)
= −1.

Proof. Note that by [2] the number of fixed points under metacomutation

by R is equal to 1 +
(
R2

0 − r

p

)
, and its sign is

(
r

p

)
. In our case p is either

5 or 7.

(α) If
(
r

5

)
=
(
r

7

)
= 1 then µR and Rµ both having 1 fixed point and

one cycle of 5 and 7 respectively, is equivalent to R2
0 = r (mod 5) and

R2
0 = r (mod 7).

(β) If
(
r

5

)
= 1 and

(
r

7

)
= −1 then µR having 1 fixed point and a cycle

of 5 and Rµ having no fixed points and a cycle of 8, is equivalent to
R2

0 = r (mod 5) and R2
0 ≡ r − 1, r − 2 or r − 4 (mod 7).

(γ) If
(
r

5

)
= −1 and

(
r

7

)
= 1 then µR having two fixed points and a

cycle of 4 and Rµ has 1 fixed point and a cycle of 7 is equivalent to
R2

0 = r ± 1 (mod 5) and R2
0 ≡ r (mod 7).

(δ) If
(
r

5

)
=
(
r

7

)
= −1 then µR having two fixed points and a cycle

of 4 and Rµ having no fixed points and a cycle of 8, is equivalent to
R2

0 = r ± 1 (mod 5) and R2
0 ≡ r − 1, r − 2 or r − 4 (mod 7).

By the previous lemma we have that in any of these cases there exists
an R ∈ L, with N(R) = r that can make the argument work.

In all the cases and depending on the value of r modulo 5 and 7 we get 1 or
2 possible values for R2

0. The previous lemma yields the result.

Proof of Proposition 5.6. From [2] we know that the signs of the permuta-
tions µR,Rµ are equal to the Legendre symbols

(
r

5

)
,
(
r

7

)
, respectively.

Moreover we know from [2] that we have at most 2 fixed points, and from [6]
that all the nontrivial cycles have the same length. Depending on the signs
of these permutations, we have the following cases:

•
(
r

5

)
=
(
r

7

)
= 1. We can easily see that both signs being positive can

happen only when some combination of the following occurs:
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µR Rµ

0 fixed points and 2 cycles of 3 0 fixed points and 2 cycles of 4

1 fixed point and a cycle of 5 0 fixed points and 4 cycles of 2

2 fixed points and 2 cycles of 2 1 fixed point and a cycle of 7

2 fixed points and 2 cycles of 3

By the previous lemmas we know that there exists R ∈ L such that
µR and Rµ both have 1 fixed point.

Then
(P0), (P1, P2, . . . , P5)

is the cycle structure of µR for the primes above 5 and

(Q0), (Q1, Q2, . . . , Q7)

is the cycle structure of Rµ for the primes above 7. It is easy to see
now from the above cycle structures and (5.5) that under RµR:

– P0Q0 is a fixed point

– (P0Q1, P0Q2, . . . , P0Q7) is a cycle of length 7

– (P5Q0, P4Q0, . . . , P1Q0) is a cycle of length 5

– (P1Q1, P5Q2, P4Q3, P3Q4, P2Q5, . . . , P3Q6, P2Q7) is a cycle of length
35

A cycle of length 35 implies that there must exist Pi, Pj , Qk, Ql such
that PiQk � PjQl, because there are 48 integers in Π35, 24 in the class
of α = 1 + 3i+ 5j, and 24 in the class of β = 1 + 3i+ 3j + 4k.

•
(
r

5

)
= −1 and

(
r

7

)
= 1. We have the following possibilities

µR Rµ

0 fixed points and 2 cycles of 3 0 fixed points and a cycle of 8

1 fixed point and a cycle of 5 2 fixed points and a cycle of 6

2 fixed points and 2 cycles of 2 2 fixed point and 3 cycles of 2
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We know that there exists R ∈ L such that µR has 1 fixed point and

Rµ has no fixed points and a cycle of 8. This would yield a cycle of
length 40 for RµR and the result follows.

•
(
r

5

)
= −1 and

(
r

7

)
= 1. We have the following possibilities

µR Rµ

0 fixed points and 3 cycles of 2 0 fixed points and 2 cycles of 4

0 fixed points and a cycle of 6 0 fixed points and 4 cycles of 2

2 fixed points and 1 cycle of 4 1 fixed point and a cycles of 7

2 fixed points and 2 cycles of 3

There exists R ∈ L such that µR has 2 fixed points and Rµ has one
fixed point and a cycle of 7. This would yield a cycle of length 28 for

RµR and the result follows.

•
(
r

5

)
=
(
r

7

)
= −1. We have the following possibilities

µR Rµ

0 fixed points and 3 cycles of 2 0 fixed points and a cycles of 8

0 fixed points and a cycle of 6 2 fixed points and a cycles of 6

2 fixed points and a cycle of 4 2 fixed points and 3 cycles of 2

In this case, there is no way we can have a cycle with length greater
than 24, but we know that if we multiply any given prime above 5 with
the 8 primes above 7 (up to right associates), we get that 4 products
are equivalent to α and 4 are equivalent to β.

Now, we know that there exists R ∈ L, such that µR has 2 fixed
points, and Rµ has no fixed points and a cycle of 8. This would
yield 2 cycles of length 8 for RµR that are (Q0P0, Q0P1, ..., Q0P8) and
(Q1P0, Q1P1, · · · , Q1P8), where Q0, Q1 are the fixed points under µR

and (P0, P1, · · · , P8) is the length 8 cycle of Rµ. On each of these cycles
we have elements of both classes, therefore the result follows.



5.2. A partial answer to the 1-3-5 conjecture 89

Note that this proof covers all the primes above 289, but is is easy to check
computationally the validity of the claim for all the primes below 289 as
well.

We will see now, how can one use Proposition 5.6 to attack the “1-3-5
conjecture”. First we will need the following auxiliary lemma. We remind
the reader that

Sm =
{
n ∈ N : 35m− n4 > 0

}
and

Tm =
{
n ∈ Sm : 35m− n4 is a sum of 3 squares

}
.

Lemma 5.9. Let p be any odd prime L ∈ N0. Then the following

(i) L is of the form 4r(8s+ 7) for some r, s ∈ N0

(ii) p2 L is of the form 4r(8s+ 7) for some r, s ∈ N0

are equivalent.

Proof. Let p2 L = 4r(8s + 7) for some r, s ∈ N0. We have 4r | L, therefore
L = 4rL′ for some L′ ∈ Z. So p2L′ = 8s + 7 ⇒ p2L′ = 7 (mod 8). We
also have that p2 ≡ 1 (mod 8), for all odd primes p ∈ Z, therefore L′ ≡ 7
(mod 8), hence L is of the form 4r(8s+ 7) for some r, s ∈ N0.

Conversely, assume that L = 4r(8s+ 7) for some r, s ∈ N0. Then p2L =
p24r(8s+ 7) = 4r[p2(8s+ 7)]. What is inside the brackets is clearly congruent
to 7 (mod 8), which yields the result.

Let us demonstrate now an interesting consequence of Proposition 5.6
and of the above lemma.

Proposition 5.10. Let p be any odd prime. The system

 m = x2 + y2 + z2 + t2

n2 = x+ 3y + 5z.

has solutions in Z for all m,n ∈ N, such that p2 | m, p | n, and n ∈ Tm.
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Proof. From p2 | m and p | n we have that there exist m′, n′ ∈ N such that
m = p2m′ and n = p n′. Therefore we have that 35m−n4 = 35 p2m′−(p n′)4

and therefore, by the previous lemma we have that

35m′ − p2 n′4 is not of the form 4r(8s+ 7) for any r, s ∈ N0. (5.6)

Hence there exists A,B,C ∈ Z such that

35m′ − p2n′4 = A2 +B2 + C2.

Let δ = pn′2 +Ai+Bj+Ck then N(δ) = 35m′, therefore there exist ζ, γ ∈ L

such that δ = ζγ and N(ζ) = 35, N(γ) = m′.

• If ζ ∼d α, the system

 m′ = x2 + y2 + z2 + t2

p n′2 = x+ 3y + 5z.

has solutions in Z, which since m = p2m′, n = pn′ implies that the
system  m = x2 + y2 + z2 + t2

n2 = x+ 3y + 5z.

has solutions in pZ.

• If If ζ ∼d β, the system

 m′ = x2 + y2 + z2 + t2

p n′2 = x+ 3y + 3z + 4t.

has solutions in Z. The above system, with the appropriate sign changes
for the coordinates of γ, can be written

 m′ = N(γ)
p n′2 = ℜ(βγ̄).
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Now by Proposition (5.6), we know that there exists primes P, P ′ ∈ L

above p ∈ Z such that Pβ = α′P ′, for some α′ ∼d α. We can see that

Pβγ̄P−1 = α′P ′γ̄P−1.

Let γ′ = P ′γ̄P−1. Since N(γ) = N(γ′) and ℜ(βγ̄) = ℜ(Pβγ̄P−1), we
have that the system

 m′ = N(γ′)
p n′2 = ℜ(α′γ′).

has solutions in 1
p
Z. Multiplying γ′ by p yields the result.

A completely analogous result is the following

Corollary 5.11. Let p be any odd prime. Then the system

 m = x2 + y2 + z2 + t2

n2 = x+ 3y + 3z + 4t.

has solutions in Z for all m,n ∈ N0, such that p2 | m, p | n, and n ∈ Tm.

5.3 A more general approach

Let m,n ∈ N0 be such that 35m− n4 ∈ Tm. On top of that, let us assume
this time that there is an odd prime p such that p2 | 35m− n4. Note that
this is a more general assumption than the result in Proposition 5.10. Then
we have that that there exist A,B,C ∈ N0 such that

35m− n4

p2 = A2 +B2 + C2 ⇒

35m− n4 = (pA)2 + (pB)2 + (pC)2.
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Let δ = n2 + pAi + pBj + pCk, then N(δ) = 35m. Therefore, ∃ζ, γ ∈ L,
with N(ζ) = 35, N(γ) = m, such that δ = ζγ. Then we can see the following
two cases:

• If ζ ∼d α, then the system (1-3-5) has integer solutions.

• If ζ ∼d β, then there are two cases.

If p = 5 or p = 7, then Propositions 4.7 and 4.11 say that the system
(1-3-5) has integer solutions.

If p ̸= 5, 7, then for λ1 = Ai+Bj + Ck, we have

ζγ = n2 + pλ1. (5.7)

Taking norms, we get 35m = n4 + p2 N(λ1), from which it is easy
to see that n2 = 35t (mod p) ⇒ n2 = 35t + pλ2 for some t, λ2 ∈ Z.
Multiplying (5.7) by ζ̄ on the left we get:

35γ = ζ̄n2 + pζ̄λ1

= ζ̄(35t+ pλ2) + pζ̄λ1

= 35ζ̄t+ pζ̄(λ1 + λ2)

Then 35 | ζ̄(λ1 + λ2) ⇒ ζ̄(λ1 + λ2) = 35λ, for some λ ∈ L. Hence

γ = t β̄ − pλ. (5.8)

Furthermore, we know that ∃P, P ′ ∈ L, with N(P ) = N(P ′) = p, such
that

Pζ = ζ ′P ′ (5.9)
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for some ζ ′ ∼d α. Now if we conjugate δ = ζγ by P we get

δ′ = PδP−1

= PζγP−1

= PζP ′−1P ′γP−1

= ζ ′P ′γP−1

Let γ′ = P ′γP−1 and from (5.8) we get that

γ′ = P ′(t ζ̄ − pλ)P−1

= t P ′ζ̄P−1 − P ′pλP−1

= t P ′ζ̄P−1 − P ′λP̄

Therefore, a sufficient condition for γ′ ∈ L is P ′ζ̄P−1 ∈ L. From (5.9)
we have that ζ̄ = P̄ ′ζ̄ ′P̄−1, so we have

P ′ζ̄P−1 = P ′P̄ ′ζ̄ ′P̄−1P−1

= pζ ′P

p
P−1 = ζ ′ ∈ L.

Let γ′ = a − bi − cj − dk and ζ ′ = α = 1 + 3i + 5j (again we may
assume this) we have that the system:

 N(γ′) = N(γ) = m

ℜ(ζ ′γ′) = ℜ(PδP−1) = ℜ(δ) = n2
⇐⇒

 m = a2 + b2 + c2 + d2

n2 = a+ 3b+ 5c

has solutions in Z.

Therefore we have proven that

Proposition 5.12. Let m,n ∈ N0 be such that n ∈ Tm. Moreover, assume

that there is an odd prime p, such that p2 | 35m − n4. Then, the system

(1-3-5) has solutions in Z.
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5.4 Metacommutation and Lipschitz integers

A very interesting thing to prove would be a more general version of Proposi-
tion 5.6. We managed to get some partial results to this direction, but there
is still no answer to the general case of this proposition. It is a potential
subject of a future work, since this would shed some light as to how the
decomposition classes behave, and help attack similar problems to the “1-3-5
conjecture”. We remind the reader that two quaternions belong to the same
decomposition class if they can be obtained from one another by coefficient
and sign changes. The number of decompositions of a natural number, is
the number of ways it can be written as a sum of 4 squares up to sign and
coefficient changes. Denote this number by DC(m), for m ∈ N. We believe
that the following holds.

Conjecture 5.1. For all primes p, q ∈ Z, with DC(p) > 2, there are

Q,Q′, P, P ′ ∈ L, such that PQ = Q′P ′ and P ̸∼d P
′, where N(Q) = N(Q′) =

q and N(P ) = N(P ′) = p.

A special case of the above can be easily proved.

Proposition 5.13. Conjecture 5.1 holds provided that there exists a prime

Q ∈ L above q such that Tr(Q)2 ≡ 4q (mod p).

Proof. If there exists Q ∈ L such that Tr(Q)2 ≡ 4q (mod p), then µQ has
a unique fixed point. Therefore since all the nontrivial cycles of µQ have
the same length, the remaining p primes above p must permute in a cycle of
length p, yielding that there must exist primes P, P ′ such that µQ(P ) = P ′

and P ̸∼d P
′.

Another interesting result is the following.

Proposition 5.14. Let p ≡ q ≡ 1 (mod 4) be primes. Then there exists

P,Q ∈ L with N(P ) = p and N(Q) = q, such that PQP−1 ∈ L.
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Proof. If q ≡ 1 (mod 4) then it can be written as a sum of 2 squares, therefore
there exist Q0, Q1 ∈ Z such that

q = Q2
0 +Q2

1.

Then we look at metacommutation by Q = Q0 +Q1i, of the primes above p.
We know that µQ has 1 +

(
Tr(Q)2−4q

p

)
fixed points. This can be written as

1 +
(
Q2

0 − q

p

)
= 1 +

(
−Q2

1
p

)
= 1 +

(−1
p

)
= 2,

since p ≡ 1 (mod 4). Therefore, there exists P ∈ L such that PQP−1 ∈ L,
in fact there are two different primes above p for any non pure prime Q′

above q with Q′ ∼d Q, that satisfy PQ′P−1 ∈ L.

Now it would be nice to prove the above proposition for any primes p
and q, but computational data seem to suggest that it is not always true.
They did seem to suggest though that the following, which was too difficult
to prove, is always true.

Conjecture 5.2. Let p, q be primes with p < q. Then Proposition 5.14 holds

for all pairs (p, q) except for the following

{(3, 23), (17, 31), (41, 71), (89, 151), (569, 647)} .
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