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Abstract  

In this work we evaluate the impact of considering a stochastic approach on the 

day-ahead basis Unit Commitment. Comparisons between stochastic and deterministic 

Unit Commitment solutions are provided. 

The Unit Commitment model consists in the minimization of the total operation 

costs considering units’ technical constraints like ramping rates and minimum up and 

down time. Load shedding and wind power spilling is acceptable, but at inflated 

operational costs. 

The generation of Unit Commitment solution is guaranteed by DEEPSO, which is a 

hybrid DE-EA-PSO algorithm, where DE stands for Differential Evolution, EA for 

Evolutionary Algorithms and PSO for Particle Swarm Optimization. 

The evaluation process consists in the calculation of the optimal economic dispatch 

and in verifying the fulfillment of the considered constraints. For the calculation of 

the optimal economic dispatch an algorithm based on the Benders Decomposition, 

namely on the Dual Dynamic Programming, was developed. If possible, the constraints 

added to the dispatch problem by the Benders Decomposition algorithm will provide a 

feasible and optimal dispatch solution. 

Two approaches were considered on the construction of stochastic solutions. Either 

the top 5 more probable wind power output scenarios are used, or a set of extreme 

scenarios are considered instead.  

Data related to wind power outputs from two different operational days is 

considered on the analysis. Stochastic and deterministic solutions are compared based 

on the actual measured wind power output at the operational day. Through a technique 

capable of finding representative wind power scenarios and their probabilities we were 

able to analyze in a more detailed process the expected final operational costs. Also, 

we expose the probability that the system operator has on the operational costs being 

under/above certain value. 

Results show that the stochastic approach leads to more robust Unit Commitment 

solutions than the deterministic one. The method of using the top 5 more probable 

scenarios on the search for the stochastic solution proved to produce preferable 

results. 

 

Index Terms – unit commitment, stochastic, wind power, forecasting, uncertainty, 

DEEPSO, Benders Decomposition. 
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Resumo 

Neste trabalho avaliou-se o impacto de se considerar uma abordagem estocástica 

no problema de Unit Commitment. Comparações entre soluções estocásticas e 

determinísticas são efetuadas. 

O modelo de Unit Commitment consiste na minimização dos custos totais de 

operação, considerando restrições técnicas das unidades de geração, como janelas de 

operação e tempos mínimos de funcionamento. Corte de carga e desperdício de 

produção eólica são permitidos, mas com custos de operação inflacionados. 

A criação de soluções de Unit Commitment é assegurada através de um algoritmo 

hídrido, chamado DEEPSO, que combina Evolução Diferencial, Programação 

Evolucionária e Otimização por Enxame de Partículas. 

O processo de avaliação consiste no cálculo do despacho económico ótimo e na 

verificação do cumprimento das restrições consideradas. Para o cálculo do despacho 

económico ótimo foi criado um algoritmo baseado na Decomposição de Benders. Caso 

seja possível, as restrições criadas pelo dito algoritmo e acrescentadas ao problema 

de despacho fornecem uma solução de despacho ótima. 

Duas abordagens foram consideradas na construção de soluções estocásticas. Ou 

são usados os 5 cenários de produção eólica mais prováveis, ou então é usado um 

conjunto de cenários extremos. 

Dados relativos a produções eólicas de 2 dias diferentes de operação são 

considerados neste estudo. Soluções estocásticas e determinísticas são comparadas 

com base nos valores de produção eólica medidos no dia de operação. Através de uma 

técnica capaz de encontrar cenários de produção eólica representativos e as suas 

probabilidades, foi possível analisar de uma forma mais detalhada os custos de 

operação esperados. O risco que o operador do sistema corre em ter custos de 

operação superiores a determinado valor é analisado. 

Os resultados mostram que uma abordagem estocástica leva a soluções de Unit 

Commitment mais robustas do que as conseguidas através de uma abordagem 

determinística. O método de utilizar os 5 cenários mais prováveis no cálculo da solução 

estocástica provou ser o mais adequado. 

 

Palavras-chave – unit commitment, estocástico, produção eólica, previsões, 

incerteza, DEEPSO, decomposição de Benders. 
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Chapter 1 

Introduction 

In order to accomplish the European Union’s objective of increasing the share of 

renewable energy to 20% until the year 2020 it has been observed a more and more 

significant presence of renewable energy sources in the power systems, allowing a 

reduction of the use of fossil fuels and their environmental impacts. 

The consequent decline of conventional power generation units combined with the 

increasing use of fluctuating power sources create new challenges for operators of 

power systems, in what concerns the stability and reliability. 

In a variety of countries in Europe, and even around the world, wind power is 

rapidly becoming a generation technology of great importance and applicability. As an 

example, Portugal has become, according to [1], the second country in the world with 

the highest share of wind generation. Although its direct economic advantages, wind 

power is considered as problematic for the power system operation because of the 

poor predictability and the variability that define it. 

The integration of large amounts of wind power will have an implication both in 

the technical operation of the electricity system and in the electricity markets [2]. To 

be capable of managing the fluctuations and unpredictability of wind power, 

conventional units have to operate in a more flexible manner in order to maintain the 

power systems’ stability. Larger amounts of wind power will require increased 

capacities of spinning and non-spinning reserves1. As consequence, the prices on the 

regulating power markets are expected to change. This happens primarily because of 

the uncertainty of the wind power, and not so much because of the variability. In fact, 

if wind power was fluctuating but perfectly predictable the conventional units will also 

have to be operated in a more flexible way, but the schedule could be made on a day-

ahead basis and decided on conventional day-ahead spot markets. It is the 

unpredictable character of wind power that makes necessary the increase of reserves 

which has price implications. 

                                                 
1 Spinning reserves are provided by online units while non-spinning reserves are provided by dedicated 

units for the matter. 
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The power systems operators must guarantee the power demand and generation 

balance, which can be problematic in systems with a high presence of wind power 

generation, particularly in periods with high wind availability and low demand, 

creating over-generation. As shown in [3], [4], wind curtailments are expected because 

of the lack of energy storage provided by pumped-hydro units. 

Therefore, it’s crucial that new ways of calculating the optimal selection of on-line 

units – Unit Commitment – are developed in such a way that could mitigate the impact 

of increasing wind power generation. 

In this thesis we execute a performance comparison between deterministic and 

stochastic Unit Commitment solutions. Our method uses a variation of the EPSO 

(Evolutionary Particles Swarm Optimization) called DEEPSO to generate, in an iterative 

mode, new Unit Commitment solutions. Each created solution is then evaluated, 

calculating a pre-dispatch, in order to the algorithm lead to an optimal solution. This 

evaluation is carried out based on the Benders Decomposition that creates and adds 

new constraints to the pre-dispatch problem every time that in each hourly sub-

problem the “shadow prices” calculated indicate to. This iterative method continues 

until an optimal pre-dispatch solution is found or no feasible solution can be 

recognized. 

The Wind Power Generation impact on the Unit Commitment problem is analyzed 

by introducing wind power output scenarios. There are created two types of UC 

solutions: one stochastic and other in a deterministic way. The stochastic method takes 

into account several wind power output scenarios and their probability of occurrence 

in the generation of UC solutions. The deterministic solutions are created based on the 

point forecast values and, in some cases, based on the most probable scenario. The 

two final solutions encountered are compared based on the actual measured wind 

power output in the operation day. To do so, a dispatch for each solution is calculated. 

The comparison between the stochastic and the deterministic solutions is also made 

taking into account all the possible wind power scenarios for each one of the days 

analyzed. Thus, a better understanding of the impact of wind power uncertainty on 

the Unit Commitment is expected. 

 



3 Definition of the Unit Commitment 

 

 

 

Chapter 2 

 

State of the Art 

In this chapter it is given a general idea of the state of the art, in what refers to 

the definition of the unit commitment and dispatch (2.1) and the integration of wind 

power into the unit commitment (2.2), namely some wind integration studies of 

relevance, reserve requirement for wind power and novel unit commitment 

algorithms. [5] was of great value in the development of this chapter. 

2.1 Definition of the Unit Commitment 

The main objective of a Unit Commitment (UC), namely a security-constrained unit 

commitment (SCUC), is to obtain a UC schedule with the minimum production cost and 

not compromising the system’s security. Normally, the SCUC’s constraints include the 

load balance, the reserve requirement, ramp rate limits, minimum up and down time 

limits and network constraints.  

The SCUC is run mainly for reliability assessment purposes; on the other hand, the 

security-constrained economic dispatch (SCED) only schedules the on-line units, not 

having the responsibility of changing their commitment statuses. 

According to an Independent System Operator (ISO) of the USA, the MISO – Midwest 

ISO – the SCUC and SCED are defined as follows [6]: 

 

SCUC: “The SCUC software tool minimizes the cost of committing sufficient 

resources to meet: forecasted demand, confirmed Interchange Schedules and 

Operating Reserve requirements. SCUC ensures that the correct amount of generation 

is online, and notifies resources to come online and the expected duration for the 

resource to be online.”. 
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SCED: “The SCED software tool balances energy injections (generation) and 

withdrawals (load), while meeting Operating Reserve requirement, managing 

congestion and calculating Locational Marginal Prices and Market Clearing Prices.”. 

 

Next are listed several modelling approaches that have been considered as 

references to the modelling formulation of the UC used in the algorithm developed. 

 

In 2006, Carrion and Arroyo [7] presented a new mixed-integer linear formulation 

for the unit commitment problem of thermal units. The formulation that was 

developed required fewer binary variables and constraints than the previously reported 

models. In that way, this new formulation allowed including a precise description of 

time-dependent start-up costs and intertemporal constraints, namely ramping limits 

and minimum up and down times, guarantying a significant computational saving. In 

this work, the formulated problem is then solved by calling on commercially available 

solvers, such as CPLEX. The presented model was successfully tested on a realistic case 

study and the numerical results revealed its accurate and computationally efficient 

performance. 

 

Later, Fu et al. [8] introduced an efficient SCUC approach with AC constraints that 

obtains the minimum system operating cost verifying the security of power systems. 

Benders decomposition was applied to separate UC in the master problem from the 

network security in sub-problems. Here, the master problem uses the Lagrangian 

relaxation method and dynamic programming to solve the UC. Meanwhile, the sub-

problem checks the AC constraints, determining whether a converged and secure AC 

power flow can be obtained. Benders cuts will be added to the master problem if any 

constraint violation arises. This iterative process will continue until no AC violations 

are present and a converged optimal solution is found. To exhibit the effectiveness of 

this proposed approach, a six-bus system and the IEEE 118-bus system with 54 units 

were analysed. 

2.2 Integration of Wind Power into Unit Commitment 

Unlike other conventional and controllable generation sources, wind power is 

unpredictable and has an intermittent character, which explains the enormous impact 

that the high penetration of wind power has on the UC problem. Therefore, due to the 

inherent uncertainty and variability of the wind power, it originates complications to 

the SCUC and the SCED. Thus, the need to revise the current SCUC and SCED algorithms 

arises. 

In what concerns the uncertainty, Wind Power Forecasting (WPF) models are 

complex systems that use input data from numerical weather prediction models, local 

meteorological measurements, SCADA data of current wind power output and terrain 

characteristics. The complexity present in the weather and the wind to power 

conversion means that WPF will always involve a significant forecasting error [9]. 

Thereby, the reliability of the system can be hampered in the event of unforeseen 

decreases in wind power because the available ramping capability of on-line units in 

the system may not be enough to compensate this change [5]. Also, in the occurrence 
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of a large upward ramp in wind power, or due to the wind power supply surplus that 

could happen at night, when there is often to be registered the strongest wind power 

and the load is low, it may be necessary to curtail wind power. 

Variability is also problematic to the generation scheduling. With the objective of 

minimizing the system operational costs, the system operator tries to utilize wind 

power as much as possible, once wind power is normally assumed to have no operating 

costs in the SCUC. To deal with the variability of wind power, the system operator has 

to coordinate its others generation sources through the Unit Commitment and 

Dispatch. 

This way, wind power needs to be considered in the system reserve procurement, 

load balancing and network constraints in the unit commitment formulation. As a 

matter of fact, even physical constraints of other non-wind units, like ramping up and 

down limits or minimum on and off time limits, are influent, leading to the relevant 

question of how to change the overall unit commitment and dispatch algorithms to 

incorporate wind power. Below, a short review of the current research is presented, 

structured into several sections. 

2.2.1 Wind Integration Studies 

In 2007, Smith et al. [10] pointed that machines with power electronic controls 

have demonstrated the capability of providing governor response and inertial response. 

Stability studies are mentioned to referrer that the doubly fed induction machine have 

demonstrated the ability of modern wind plants to improve system performance by 

damping power swings and supporting post-fault voltage recovery. It is said that an 

analysis of the net load variability in the different time frames, with and without wind, 

can give good insight into the additional reserves required to maintain a reliable system 

operation. Thus, it is assumed that the capacity value of wind has been shown to range 

from approximately 10% to 40% of the wind plant rated capacity. Finally, the authors 

concluded that the aggregation of wind plants over large geographical areas provide 

an effective mechanism to reduce wind plant variability and large balancing areas can 

help manage wind plant variability more easily than smaller ones. 

 

Already in 2009, Smith et al. [11] described the status of integrating wind energy 

into electric power system. According to several investigations considering high 

penetrations of wind – up to 25% energy – the power system in the USA can handle 

these high penetration without compromising its operation. It is mentioned that the 

value of good wind forecasting has been clearly demonstrated to reduce unit 

commitment costs. Also, faster markets (e.g., 10 min rather than 1h) can reduce wind 

integration costs. The difficulties of maintaining system balance under conditions of 

light-load with significant wind variability have been illuminated, and it is suggested 

that some combination of system flexibility, wind curtailment, wind ramp-rate 

mitigation and new loads added in light-load periods will be needed. Moreover, the 

value of sharing balancing functions over large regions with a diversity of loads, 

generators and wind resources has been clearly demonstrated. 

Present technology allows individual wind turbine controllers to have fault ride-

through control capabilities that enable the wind turbines to stay connected during 
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and after grid faults in the power transmission system. In normal operation conditions, 

the wind turbines have active and reactive power set points available for external 

control, supporting the power balancing and frequency control functions in the power 

system. As an example of the new wind plant features, it is indicated the Danish plant 

Horns Rev, the first large offshore wind plant. There, the wind plant main controller 

has operated as an integrated part of the central system control ensuring the power 

balance in the system. The authors consider that it is expected that such functionality 

will be inevitable in future power systems with large-scale wind penetration. 

 

Mirbach et al. [12] focused their work on evaluate the impact on the generation 

pool and its marginal generation costs for electrical energy and the transnational 

interdependencies, in case of a significant share of renewable energies in the power 

generation systems. The substantial share of renewable energies and the connected 

changes in the power generation system produced a 13% reduction of variable 

generation costs. It is pointed that, due to export capacity shortages which interfere 

with the full utilization of renewable energies, additional capacities of wind power 

might not be economically reasonable after the year 2030. 

 

In 2012, Faias et al. [3] presented a methodology for assessment and optimization 

of wind energy integration into power systems considering flexible backup generation 

and storage. The Portuguese power system was used as study example. According to 

their simulation results, the pumped-hydro units schedule for the future will not 

provide enough energy storage capacity and, for that motive, wind curtailments are 

expected in the Portuguese power system. One of the main reasons that is pointed for 

these curtailments is the combination of high wind penetration and the run-of-river 

hydro generation. In what concerns the transmission network, the power flow 

simulation showed that no constraints will occur, in any of the scenarios considered. A 

technical and economic analysis was made in order to consider an additional energy 

storage system that completely offsets the wind energy curtailments, which was 

discarded due to the high capital costs involved in that solution.

 

2.2.2 Reserve Requirement for Wind Power 

In 2005, Doherty and O’Malley [13] presented a new methodology to quantify the 

reserve needed on a system taking into account the uncertain nature of wind power. 

The reliability of the system is used as an objective measure to determine the effect 

of increasing wind power penetration. The authors concluded that increasing wind 

power capacity causes a distinct but not excessive increase in the amount of reserve 

needed on the system; in fact, increasing amounts of wind capacity causes a greater 

necessity for categories of reserve that act over longer periods of time. It is shown 

that committing reserve with large forecast horizon, i.e., several hours before the hour 

in question, cases an increase in the amount of reserve needed, which can be explained 

by the extra reserve that must be committed to cater for possible wind power deficits 

between the time the operating decisions were made and the period in question. 
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Also regarding this subject, Ortega-Vasquez and Kirschen [14] proposed a technique 

to calculate the optimal amount of spinning reserve which enables the system operator 

to respond not only to generation outages but also to errors in the forecasts for load 

and wind production. The developed technique determines the amount of spinning 

reserve that minimizes the total cost of operating the system. It is concluded that an 

increased wind power penetration does not necessarily require larger amounts of 

spinning reserve. This conclusion should be taken with care and shouldn’t be 

generalized to other systems because it depends heavily on the hypothesis of the study 

and the underlying model used in the study. 

 

Matos and Bessa [15] suggest a new reserve management tool that is intended to 

support the TSO in defining the on-line operating reserves necessities for the daily and 

intraday markets. In this work, decision strategies like setting an acceptable risk level 

or finding a compromise between economic issues and the risk of loss of load are 

explored. 

 

In [16], Xue et al. attempted a new way to consider the uncertainty of wind power 

forecast in the system operating reserve estimation. Credibility theory is applied for 

calculating a set of indices which can dynamically forecast the risk of wind power 

output. The tests carried on showed that the credibility of the two indices calculated 

can reduce the unnecessary operating reserve effectively with system security 

guarantee. 

 

In 2012, Bessa et al. [17] reported the results and an evaluation methodology from 

two new decision-aid tools that were demonstrated at a TSO (REN, Portugal) during 

several months. The first tool is a probabilistic method that is intended to support the 

TSO on the decision of the operating reserve requirement, while the second one is a 

fuzzy power flow tool that can identify possible congestion situations and voltage 

violations in the transmission network. Probabilistic wind power forecasts are used as 

input in both tools. 

The first tool, contrarily to what happens with deterministic rules, informs the 

decision maker about the level of risk that he is taking, making him alert to possible 

situation with high risk. The results showed that different forecast lead to different 

performances of the management tools and probabilistic wind power forecasts may 

lead to a decrease in reserve requirements and better decisions. 

In what refers to the fuzzy power flow tool, it was clear that the use of wind power 

uncertainties forecasts in power flow calculations represents an additional benefit, 

particularly when the network is operating near its limits. The results concluded that 

the transmission network is robust enough to accommodate the installed wind power 

capacity. 

 

Last year, in 2013, Ahmadi-Khatir et al. [18] proposed a decentralized methodology 

to optimally schedule generating units while simultaneously determining the 

geographical allocation of the required reserve. An interconnected multi-area power 

system with cross-border trading in presence of wind power uncertainty is considered 

on the study. The authors concluded that the proposed decentralized technique is 
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accurate, as the final results are equal to the obtained by centralized procedure that 

use the whole information available in all areas. Additionally, it is said that the units 

schedules and the geographical allocation of the reserve in a determined area are 

dependent on the wind power uncertainty level and also on the tie-lines capacities 

between areas. 

2.2.3 Novel Unit Commitment Algorithms 

With their paper [19], Tuohy et al. examined the effects of stochastic wind and 

load on the unit commitment and dispatch of power systems with high levels of wind 

power. The impact of planning the system more frequently to account for updated 

wind and load forecasts were also analyzed. They believed that taking into account 

the stochastic nature of wind in the unit commitment algorithm, more robust schedules 

could be produced. The WILMAR project [20] was used as a tool. As result of their work 

they concluded that mid-merit gas and peaking units are used more when wind is not 

forecast perfectly compared to what happens with perfect forecasts. Furthermore, 

optimizing deterministically results in an increase in the use of those type of units, 

because of the less robust schedules produced. The number of hours reserve 

requirements are not met increases when the frequency of committing reduces, i.e., 

moving from committing every hour to every 6 hours. It is shown that a saving of 

approximately 0.25% (in 1 hour rolling) to 0.9% (in 3 hour rolling) can be achieved if 

the system is optimized stochastically as opposed to deterministically. 

 

Ummels et al. [4] proposed a new simulation method that can fully assess the 

impacts of large-scale wind power on system operations from cost, reliability and 

environmental perspectives. The problem formulation included constraints such as 

ramp-rate for generation schedules and reserve activations and minimum up and down 

times of conventional units. The method developed was applied to the Dutch power 

system. The results obtained indicate that wind power forecast has a negligible effect 

on thermal system operating cost, emission reductions and wasted wind. It is 

concluded that for the optimization of system operation with large-scale wind power 

it is essential to acquire accurate, near-real-time wind power measurements and a 

continuous re-calculation of unit commitment and dispatch. 

 

In 2008, Boffard and Galiana [21] formulated a short-term forward electricity 

market-clearing problem with stochastic security capable of accounting for non-

dispatchable and variable wind power generation sources. In this work, the reserve 

requirements are determined through simulation of the wind power realization in the 

scenarios considered, instead of being pre-defined. The scenarios included the ability 

to proceed to load shedding and wind curtailment. The authors referred that the 

problem might become unapproachable because its dimensionality considerably grows 

when multiple scenarios are considered. 

 

Later, Wang et al. [22] presented a security-constrained unit commitment 

algorithm that takes into account the intermittency and volatility of wind power 

generation. The uncertainty of the wind power output is included by the construction 
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of several scenarios. In order to reduce the computational time and effort the problem 

is decomposed to a master problem and many sub-problems by application of Benders 

decomposition technique. The UC problem is solved in the master problem with the 

forecasted intermittent wind power generation. Succeeding, the wind power volatility 

is introduced by the built scenarios. An initial dispatch is verified in the sub-problems 

and generation redispatch is a possibility to satisfy the hourly volatility presented in 

the simulated scenarios. If the technical violations persist after the redispatch, 

Benders cuts are created and added to the master problem to revise the schedule 

solution. This iterative process continues until simulated wind scenarios can be 

accommodated by redispatch. The achieved results point out that the iterations 

between the master UC problem and the sub-problems allow the construction of a 

robust unit commitment and dispatch solution. Physical limitation of units such as 

ramping are found to be crucial for accommodating the volatility of wind power 

generation. The method described can be improved through better modeling of wind 

power forecasting errors and allowing wind spillage and load curtailment and using 

reserves to address the uncertainties in wind. 

 

In this paper [23], Ruiz et al. evaluate the benefits of a combined approach that 

uses stochastic and reserve methods for the efficient management of uncertainty in 

the unit commitment problem in presence of significant amounts of wind power. 

Numerical studies showed that the UC solutions that were obtained with this combined 

approach are more robust than the others that follow the traditional approach – 

deterministic. It is concluded that combining scenarios with proper amount of reserve 

requirements leads to very robust solutions, fact which is connected to the reduction 

of the expected costs. Units with higher ramp limits, lower minimum up and down 

times and lower economic minimum capacity are preferred with stochastic 

formulations comparing to what happens with deterministic formulations. It is declared 

that stochastic policies attain lower wind curtailments than deterministic policies. It 

is expected that, in the future, the use of stochastic unit commitment formulations 

are widespread. 

 

In 2012, Wang et al. [24] presented a unit commitment problem with uncertain 

wind power which is formulated as a chance-constrained two-stage stochastic 

program. The developed model ensures that, with high probability, a large portion of 

the wind power output will be utilized at each operating hour. A combined Sample 

Average Approximation algorithm is developed to solve the model effectively. Three 

types of policies were studied and the wind utilizations by these policies, compared. 

Computational results indicate that a higher level of wind power generation might 

increase the total power generation cost. In a related paper, Wang et al. [25] used this 

methodology to propose a price-based UC with wind power utilizations constraints. 

The model incorporates day-ahead price, real-time price, and wind power output 

uncertainties. In the first stage, the unit commitment is defined as well as the amount 

of energy offered for the day-ahead market. Then, the economic dispatch of 

generators is made. To ensure the utilization of the volatile wind power to a large 

extent a chance constraint is considered. 
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2.3 Chapter’s Conclusion 

The impacts that the increasing use of renewable energy has on the UC have been 

studied for the last years. The uncertainty of wind power plays a significant role on 

the UC problem. To deal with that, stochastic approaches are being considered to 

replace the conventional deterministic methods of scheduling generation units. The 

computational time and effort problems associated to the stochastic methods can be 

overcome by the use of approaches like Benders Decomposition.
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Chapter 3 

Tools and Modelling 

The definition of the adopted UC model is crucial to the understanding of the work 

carried out and to the correct analysis of the obtained results. The considerations 

made on the construction of our UC model are presented in the next section. 

3.1 UC Problem Modelling 

The main considerations adopted in the resolution of the Unit Commitment problem 

are presented next. As the principal objective of this work thesis is to investigate the 

impact that considering a stochastic approach has on the UC problem, no constraints 

related to power flow were considered. In fact, no representation of an electric 

network is present in this study. 

The decision variables in the Unit Commitment problem are 𝜇𝑖,𝑘, that represent the 

unit commitment status of the unit k at the interval i; and 𝑃𝑖,𝑘 which is the real power 

generation of the unit k at the interval i. 𝜇𝑖,𝑘 is a binary variable, having the value “1” 

to the on status, and the value “0” to the off status. 

The objective function was defined as follows: 

 

 𝑀𝑖𝑛 ∑ ∑  𝜇𝑖,𝑘 ∗ 𝐶𝑘( 𝑃𝑖,𝑘) +  𝜇𝑖,𝑘 ∗ (1 −  𝜇𝑖−1,𝑘)
𝑀

𝑘=1
∗ 𝑐𝑘

𝑠𝑡𝑎𝑟𝑡

𝑇

𝑖=1

 (3.1) 

 

As presented, the objective function is the minimization of the total operation costs 

that result of the sum of 𝐶𝑘( 𝑃𝑖,𝑘) and the unit’s start costs, 𝑐𝑘
𝑠𝑡𝑎𝑟𝑡.  𝐶𝑘( 𝑃𝑖,𝑘) is the 

operation cost due to the level of generation of the unit k at the interval i, defined by 

an economic dispatch. 

The constraints considered are presented below. 
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 ∑  𝜇𝑖,𝑘 ∗ 𝑃𝑖,𝑘

𝑀

𝑘=1
= 𝑃𝑖

𝑙𝑜𝑎𝑑 − 𝑃𝑖
𝑤𝑖𝑛𝑑   ⩝𝑖 (3.2) 

 

The first constraint refers to the system power balance. It forces that the 

generation level of the committed units equals the required level of load subtracting 

the wind power generation. 

 

 ∑  𝜇𝑖,𝑘 ∗  𝑃𝑘
𝑀𝑎𝑥

𝑀

𝑘=1
≥ 𝑃𝑖

𝑙𝑜𝑎𝑑 − 𝑃𝑖
𝑤𝑖𝑛𝑑 + 𝑃𝑖

𝑟𝑒𝑠𝑒𝑟𝑣𝑒   ⩝𝑖 (3.3) 

 

 ∑  𝜇𝑖,𝑘 ∗  𝑃𝑘
𝑀𝑖𝑛

𝑀

𝑘=1
≤ 𝑃𝑖

𝑙𝑜𝑎𝑑 − 𝑃𝑖
𝑤𝑖𝑛𝑑   ⩝𝑖 (3.4) 

 

Equations 3.3 and 3.4 are related to the units’ technical limits and the expected 

levels of load and reserve. Thus, the combination of all maximum generation limits of 

the committed units must, at least, equal the expected level of load and reserve 

combined, subtracting the wind power generation (3.3). Also, the sum of all units’ 

minimum generation limits must be inferior to the expected value of load, for each 

operation period (3.4). 

 

 𝜇𝑖,𝑘 ∗ 𝑃𝑘
𝑀𝑖𝑛 ≤ 𝑃𝑖,𝑘 ≤ 𝜇𝑖,𝑘 ∗ 𝑃𝑘

𝑀𝑎𝑥   ⩝𝑖 ,⩝𝑘 (3.5) 

 

The previous equation represents the constraint of real power generation limits of 

the system units. 

 

 𝑃𝑖,𝑘 − 𝑃𝑖−1,𝑘 ≤ 𝑅𝑘
𝑢𝑝

∗ 𝛥𝑡  ⩝𝑘 (3.6) 

 

 𝑃𝑖−1,𝑘 − 𝑃𝑖,𝑘 ≤ 𝑅𝑘
𝑑𝑛 ∗ 𝛥𝑡  ⩝𝑘 (3.7) 

 

3.6 and 3.7 are the ramping up and down constraints, respectively. The variation 

in the units output level is limited by the ramp up and down limits, 𝑅𝑘
𝑢𝑝

 and 𝑅𝑘
𝑑𝑛. In 

our problem 𝛥𝑡 has the value of 1 hour. 

 

 (𝑋𝑜𝑛𝑖−1,𝑘 − 𝑇𝑘
𝑢𝑝

) ∗ (𝜇𝑖−1,𝑘 − 𝜇𝑖,𝑘) ≥ 0  ⩝𝑖 ,⩝𝑘 (3.8) 

 

 (𝑋𝑜𝑓𝑓𝑖−1,𝑘 − 𝑇𝑘
𝑑𝑛) ∗ (𝜇𝑖,𝑘 − 𝜇𝑖−1,𝑘) ≥ 0  ⩝𝑖,⩝𝑘 (3.9) 

 

To implement the minimum up and down times constraints of the committed units, 

equations 3.8 and 3.9 had to be considered. 𝑋𝑜𝑛𝑖−1,𝑘 and 𝑋𝑜𝑓𝑓𝑖−1,𝑘 represent the 

number of consecutive periods that unit k have been on and off, respectively, until 

period i-1. 𝑇𝑘
𝑢𝑝

 is the minimum up time for unit k, and 𝑇𝑘
𝑑𝑛 is the minimum down time. 
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3.2 DEEPSO 

For the realization of this work was necessary the use of different tools, 

computational and conceptual. In this section, we introduce DEEPSO. Benders 

Decomposition technique will be presented in a later section. A brief reference is made 

on the technique behind the construction of the representative wind power scenarios 

in the end of this chapter. 

 

DEEPSO is a hybrid DE-EA-PSO algorithm, where DE stands for Differential Evolution, 

EA for Evolutionary Programming and PSO for Particle Swarm Optimization. It was 

presented in [26], where it is tested for a complex study case in the domain of power 

systems. It departed from an algorithm denoted EPSO, for Evolutionary Particle Swarm 

Optimization. The beginning version of EPSO was presented in [27] and combined the 

exploratory power of PSO (Particle Swarm Optimization) with the self-adaptation of 

EA. Several works confirmed the quality and reliability of this tool [28]–[35]. The 

earliest version of EPSO is available from [36]. 

In the DEEPSO algorithm the conception of new individual is made based on 

 

                                             𝑋(𝑘+1) = 𝑋𝑘 + 𝑉𝑘                                           (3.10) 

                        𝑉(𝑘+1) = 𝐴𝑉𝑘 + 𝐵(𝑋𝑟1
𝑘 − 𝑋𝑘) + 𝑃[𝐶(𝑏𝐺

∗ − 𝑋𝑘)]                        (3.11) 

 

Where X is a particle and V is called the particle velocity. A, B and C are diagonal 

matrices with the weights that are previously defined. 𝑿𝒓𝒍
𝒌  is formed through an 

uniform recombination, which randomly selects, from the universe of all individual 

best memory solution, a coordinate for each dimension. 𝒃𝑮
∗  results from 𝑏𝐺

∗ = 𝑏𝐺(1 +

𝑤𝐺𝑁(0,1)), 𝒃𝑮 being the best point so far found by the swarm and 𝒘𝑮 a Gaussian 

distributed random number. 

The parameters A, B and C are subjected to mutation and selection in order to 

achieve a higher progress rate. 

 

The general scheme of the DEEPSO algorithm could be: 

1. Generating a Random Population 

2. Evaluate the Current Population 

3. Initiate cycle until termination criteria is not met 

a. Clone Current Population 

b. Apply DEEPSO movement rule to both populations (Current and 

Cloned) 

c. Evaluate both populations 

d. Create new population by competition between Current and Cloned 

populations 

e. Verify termination criteria: 

i. If termination criteria met, end cycle; 

ii. If termination criteria not met, return to a. 
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The developed functions added to the original code of DEEPSO are presented next. 

A detailed scheme of the created algorithm is offered. 

 

1. The first step is to create a random population. In this first stage of the 

algorithm, the population’s size is of 30 particles, in order to be possible to 

gather several feasible solutions. Each particle represents an UC solution. 

The dimension of the particles comes from 𝑁𝐺 ∗ 𝑁𝑇, where 𝑁𝐺 is the number 

of generation units and 𝑁𝑇 is the number of operation periods in the 

problem. 

2. The created population passes through a corrective path, by the use of two 

functions that rearrange the UC solutions in such a way that constraints 3.3 

and 3.4 can be satisfied. 

3. Then, the Current population is evaluated by the use of a function that 

contains a routine that uses the Benders Decomposition to calculate the 

optimal dispatch for each of the UC solutions. 

4. At this point, for computational time saving, the population’s size changes 

from 30 particles to 10. The top 10 evaluated solutions are selected to build 

this shortened population. 

5. A loop begins until termination criteria is not met. We defined as 

termination criteria a maximum number of generations. Also, the loop will 

end if the best solution found stays the same for 70% of the defined 

maximum number of generations. In this case, the termination criteria 

consist in either a maximum number of generation or a determined number 

of generations without finding a better solution. 

a. The Cloned population is created from the Current one; 

b. The DEEPSO movement rule is applied to both the populations; 

c. Both populations are adjusted in order to the UC solutions respect 

the constraints 3.3 and 3.4; 

d. Evaluation of the populations is carried out using the Benders 

Decomposition. A deterministic evaluation uses wind power point 

forecast in the formulation of the dispatch problem. Stochastic 

evaluation consists in several runs of the routine with Benders 

Decomposition, one for each considered scenario. The final fitness 

value of a stochastic solution has the scenarios probabilities 

weighted: 𝐹𝑖𝑡𝑓𝑖𝑛𝑎𝑙 = ∑ 𝑝𝑟𝑜𝑏𝑖 ∗ 𝑓𝑖𝑡𝑖
𝑠𝑐𝑛
𝑖=1 , where 𝑓𝑖𝑡𝑖 is the fitness value 

encountered for each of the i scenarios and 𝑝𝑟𝑜𝑏𝑖 is the probability 

associated to the scenario i; 

e. If the termination criteria is met, the loop ends; if not, return to 

“a.”.
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3.3 Benders Decomposition – Dual Dynamic Programming 

For time-sequenced problems, like the Unit Commitment problem, it can be used 

the dual dynamic programming via Benders Decomposition. 

In this section the mathematical structure of such technique will be explained. For 

that, we first present the principal concepts [37] and then, through a simple example, 

finish the explanation. 

3.3.1 Principal Concepts – Mathematical Formulation 

For a given problem that extends through 3 time steps and has decision 

variables 𝑋1, 𝑋2 and 𝑋3, one for each time step, we can mathematically formulate this 

problem as: 

 

Min: 𝐶1
𝑡𝑋1 + 𝐶2

𝑡𝑋2 + 𝐶3
𝑡𝑋3  

Subj: 𝐴1𝑋1    ≥ 𝑏1 

 𝐸2𝑋1 + 𝐴2𝑋2 ≥ 𝑏2 

          𝐸3𝑋2 + 𝐴3𝑋3 ≥ 𝑏3 

 

Where 𝐶1, 𝐶2 and 𝐶3 are the cost coefficients for each decision variable. It becomes 

clear that the matrix of constraint coefficients is sparse and also, the sub-matrix E 

establishes the connections between followed time stages. Without the sub-matrix E 

there would be 3 independent problems instead of a global one. 

For a matter a simplicity, let’s assume: 

 
Min: 𝐶1

𝑡𝑋1 + 𝐶2
𝑡𝑋2  

Subj: 𝐴1𝑋1    ≥ 𝑏1 

 𝐸2𝑋1 + 𝐴2𝑋2 ≥ 𝑏2 

 

The aspect of this problem can be changed by: 

 
Min: 𝐶1

𝑡𝑋1 + 𝐶2
𝑡𝑋2  

Subj: 𝐴1𝑋1    ≥ 𝑏1 

               𝐴2𝑋2 ≥ 𝑏2 - 𝐸2𝑋1 

 

Now, this is equivalent to the following formulation: 

                                  
Min: 𝐶1

𝑡𝑋1 + 𝛼(𝑋1)  

Subj: 𝐴1𝑋1    ≥ 𝑏1 

Where:   

 𝛼(𝑋1) = min 𝐶2
𝑡𝑋2   

Subj:                              𝐴2𝑋2 ≥ 𝑏2 - 𝐸2𝑋1 
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This way we now have a “Master Problem” – the one on 𝑋1 – and a “sub-problem”, 

which is resolved on 𝑋2. Solving the dual of the sub-problem for a specific value of 𝑋1
∗ 

will result in a vertex 𝜋∗ of the sub-problem domain and thus finding a constraint that 

can be added to the master problem. In a linear optimization problem the solution is 

always in one of the vertex of the domain. The obtained constraint comes in the 

form 𝛼 ≥ ( 𝑏2  −  𝐸2𝑋1)𝑡 ∗ 𝜋∗. So, the master problem is now: 

 

Min: 𝐶1
𝑡𝑋1 + 𝛼(𝑋1)  

Subj: 𝐴1𝑋1    ≥ 𝑏1 

 𝛼 ≥ ( 𝑏2  −  𝐸2𝑋1)𝑡 ∗ 𝜋∗ 

 

The iterative cycle of the Benders Decomposition algorithm could be written in this 

manner: 

1 Solve the master problem and obtain a new guess 𝑋1
∗; 

2 With the value 𝑋1
∗, solve the dual of the sub-problem and obtain 𝜋∗; 

3 With 𝜋∗, add the new constraint 𝛼 ≥ ( 𝑏2  − 𝐸2𝑋1)𝑡 ∗ 𝜋∗ to the master 

problem e return no 1. 

 

For stop criterion it can be chosen one of two. Either stop when no constraints are 

added to the master problem, or, having defined a tolerance, verify the progress in 

the objective function. 

3.3.2 Numerical Example - Dispatch 

One iteration of the Benders Decomposition algorithm will be presented next. For 

that an academic dispatch problem is considered. The problem consists on 2 generators 

and 3 operation periods. The problem data is presented in the table 1. 

 

Table 1 – Numerical Example – Problem Data 

 𝐶𝑖,𝑘 Unit1 Unit2    𝐿𝑖    𝑅𝑘  

Costs 
𝑡1 4 2  

Load 
𝑡1 100  Ramp 

Rate 

Unit1 30  

𝑡2 1 2  𝑡2 70  Unit2 20  

 𝑡3 1 4   𝑡3 90      

           Max Min 

         
Limits 

Unit1 50 0 

         Unit2 90 40 

 

 

The problem formulation is observable bellow. First the objective function is 

presented, followed by the problem constraints. 
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Min: ∑ ∑ 𝐶𝑖𝑘
𝑡 ∗ 𝑃𝑖𝑘

3

𝑘=1

3

𝑖=1

 

 

Subj: 1 1 0 0 0 0 

* 

 ≥ 100 

P
ro

b
le

m
 1

  −1 −1 0 0 0 0  ≥ -100 

 1 0 0 0 0 0  ≥ 0 

 −1 0 0 0 0 0  ≥ -50 

 0 1 0 0 0 0  ≥ 40 

 0 −1 0 0 0 0  ≥ -90 

 −1 0 1 0 0 0  ≥ -30 

P
ro

b
le

m
 2

 

 1 0 −1 0 0 0  ≥ -30 

 0 −1 0 −1 0 0  ≥ -20 

 0 1 0 1 0 0  ≥ -20 

 0 0 1 1 0 0 𝑃11 ≥ 70 

 0 0 −1 −1 0 0 𝑃12 ≥ -70 

 0 0 1 0 0 0 𝑃21 ≥ 0 

 0 0 −1 0 0 0 𝑃22 ≥ -50 

 0 0 0 1 0 0 𝑃31 ≥ 40 

 0 0 0 −1 0 0 𝑃32 ≥ -90 

 0 0 −1 0 1 0  ≥ -30 

P
ro

b
le

m
 3

 

 0 0 1 0 −1 0  ≥ -30 

 0 0 0 −1 0 1  ≥ -20 

 0 0 0 1 0 −1  ≥ -20 

 0 0 0 0 1 1  ≥ 90 

 0 0 0 0 −1 −1  ≥ -90 

 0 0 0 0 1 0  ≥ 0 

 0 0 0 0 −1 0  ≥ -50 

 0 0 0 0 0 1  ≥ 40 

 0 0 0 0 0 −1  ≥ -90 
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Problems 2 and 3 can be arranged to this: 

 

   𝑃21  ≥ -30 + 𝑃11 

P
ro

b
le

m
 2

 

   -𝑃21  ≥ -30 − 𝑃11 

    -𝑃22 ≥ -20 + 𝑃12 

    𝑃22 ≥ -20 − 𝑃12 

   𝑃21     + -𝑃22 ≥ 70 

   -𝑃21   + -𝑃22 ≥ -70 

   𝑃21  ≥ 0 

   -𝑃21  ≥ -50 

    𝑃22 ≥ 40 

    -𝑃22 ≥ -90 

 

 

 

   𝑃31  ≥ -30 +  𝑃21 

P
ro

b
le

m
 3

 

   -𝑃31  ≥ -30 −  𝑃21 

    𝑃32 ≥ -20 +  𝑃22 

    -𝑃32 ≥ -20 −  𝑃22 

   𝑃31     + 𝑃32 ≥ 120 

   -𝑃31    + -𝑃32 ≥ -120 

   𝑃31  ≥ 0 

   -𝑃31  ≥ -50 

    𝑃32 ≥ 40 

    -𝑃32 ≥ -90 

 

First we have a progressive routine, resolving the problem from 1 to 3. The solution 

for the problem 1 is 
𝑃11

𝑃12
=  

10
90

 with an objective function value of 220. With this solution 

from problem 1, problem 2 can be resolved. 

 

   𝑃21  ≥ -20 

P
ro

b
le

m
 2

 

   -𝑃21  ≥ -40 

    -𝑃22 ≥ 70 

    𝑃22 ≥ -110 

   𝑃21     + 𝑃22 ≥ 70 

   -𝑃21    + -𝑃22 ≥ -70 

   𝑃21  ≥ 0 

   -𝑃21  ≥ -50 

    𝑃22 ≥ 40 

    -𝑃22 ≥ -90 
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Its solution is 
𝑃21

𝑃22
=  

0
70

, which is used in the resolution of problem 3. The objective 

function in this problem has the value of 140. 

 

     𝑃31  ≥ -30 

P
ro

b
le

m
 3

 

     -𝑃31  ≥ -30 

      𝑃32 ≥ 50 

      -𝑃32 ≥ -90 

     𝑃31     + 𝑃32 ≥ 90 

     -𝑃31    + -𝑃32 ≥ -90 

     𝑃31  ≥ 0 

     -𝑃31  ≥ -50 

      𝑃32 ≥ 40 

      -𝑃32 ≥ -90 

 

The solution from problem 3 is 
𝑃31

𝑃32
=  

30
60

 leading to an objective function value of 

270. The total cost of operation is now of 630. 

Once reached the problem 3, the progressive routine is terminated. The regressive 

routine starts from problem 3 to problem 1. 

First, the dual from problem 3 is solved. The solution is 𝜋3 = [0 3 0 0 4 0 0 0 0 0], 

with 𝛼3 = 270 – the same objective function value of its primal, as it is supposed. A 

new constraint is then added to the problem 2, as explained in the previous section. 

The problem 2 becomes: 

 

   𝑃21   ≥ -20 
P
ro

b
le

m
 2

 

   -𝑃21   ≥ -40 

    -𝑃22  ≥ 70 

    𝑃22  ≥ -110 

   𝑃21     + 𝑃22  ≥ 70 

   -𝑃21    + -𝑃22  ≥ -70 

   𝑃21   ≥ 0 

   -𝑃21   ≥ -50 

    𝑃22  ≥ 40 

    -𝑃22  ≥ -90 

   3𝑃21 +  𝛼3 ≥ 270  

 

The dual from problem 2 is resolved, which provides 𝜋2 = [0 0 4 0 0 2 0 0 0 1], 

with 𝛼2 = 410. A constraint is added to problem 1. 
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 𝑃11     + 𝑃12  ≥ 100 

P
ro

b
le

m
 1

  -𝑃11    + -𝑃12  ≥ -100 

 𝑃11   ≥ 0 

 -𝑃11   ≥ -50 

  𝑃12  ≥ 40 

  -𝑃12  ≥ -90 

  -4𝑃12 +    𝛼2 ≥ 50  

 

In this phase, a new progressive routine is in order. Therefore, problem 1 is resolved 

with its new constraint. Its solution is 
𝑃11

𝑃12
=  

50
50

. The objective function of this problem 

represents the total cost of operation, because it includes 𝛼2, which includes 𝛼3. The 

value of such objective function is 550, representing an improvement when compared 

to the 630 obtained at the end of the last progressive routine. 

The same procedure made early is repeated until no constraints are added or no 

progress in the objective function is achieved. 

3.3.3 Adapting the Dual Dynamic Programming to the UC 

Problem 

The solutions evaluation procedure consists in calculating the optimal economic 

dispatch. To do so, a routine using Benders Decomposition was developed. Here, the 

procedure is described. 

 

1. An initial dispatch solution is provided as an input to the Benders 

Decomposition function. This solution does not guarantee the respect of the 

ramp rate constraints. This initial solutions allows the iterative process to 

begin. The iterative process has two phases – progressive and regressive. 

The progressive phase starts at the first operation period and continues until 

the last. In the regressive phase, the reverse path is taken. The regressive 

process resolves the same problems that the progressive did, 

contemplating, when needed, the constructed constraints. 

Each phase follows the same algorithm structure, which is explained below.  

2. Reminding:  

 

Min: 𝐶1
𝑡𝑋1 + 𝐶2

𝑡𝑋2  

Subj: 𝐴1𝑋1    ≥ 𝑏1 

               𝐴2𝑋2 ≥ 𝑏2 - 𝐸2𝑋1 

 

For each of the operation periods the matrix A and E are constructed. They 

are matrix containing only the value 1 or 0, adapting to the current period 

unit commitment (A) and the past period unit commitment (E). The matrix 

b is also constructed for each operation period. 
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In the progressive process, the current period is considered master problem 

of the subsequent one(s).  It is resolved considering the constraints added 

from its sub-problem. 

 

Min: 𝐶1
𝑡𝑋1 + 𝛼(𝑋1)  

Subj: 𝐴1𝑋1    ≥ 𝑏1 

 𝛼 ≥ ( 𝑏2  −  𝐸2𝑋1)𝑡 ∗ 𝜋∗ 

 

3. Having the problem structured, the solution is found through a linear 

optimization function, linprog. In the regressive process, this function also 

provides the “shadow prices”, i.e., the dual problem solution, needed to 

the construction of the constraint to be added to the respective master 

problem. 

4. This back and forward process continues until the best solution found, i.e., 

with lower operation costs, does not change for a determined number of 

iteration. 5 iterations showed to be enough. 

 

 

One of the most critical problem on accommodating the wind power is the inherent 

variability. Consecutive periods often have significant amplitude on the wind power 

output levels. The capacity of the power system to deal with such difficulty is 

restrained by the ramping rates of the committed units. The developed Benders 

Decomposition routine, through the additional constraints that creates, is capable of 

finding the optimal dispatch solution that accommodates the mentioned variability. 

To do so, in the anteceding periods of the periods considered critical, the level of 

generation on the units with greater ramp rates is decreased and shifted to other units. 

Therefore, in the critical periods, the power system has more ramping capacity to cope 

with an abrupt fall of the wind power generation level. On the opposite side, when the 

critical period represents a sudden increase of wind power generation, the 

conventional power generation is shifted to the units that on the critical period are 

not committed. 

3.3.4 Selecting the Optimization Framework 

Two strategies were considered on the selection of the optimization framework: 

one using the Matlab conventional optimization tool box, and the other supported by 

a commercial solution. 

The version of the developed algorithm using the Matlab optimization tool box 

needed approximately 1 hour and 12 minutes to produce a UC solution, after 10 DEEPSO 

generations, considering no wind power scenarios. Figure 1 presents a Matlab report 

on the spent time. 
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Figure 1 – Matlab Report – Conventional tool box version 

 

As can be verified in figure 1, the optimization function, linprog, and its sub-

functions are the principal factor that explains the expended time.  

The incorporation of the commercial and more powerful optimization tool, GUROBI 

[38] permitted a reformulation of the optimization function linprog. Thus, the time 

performances were greatly improved. Figure 2 helps demonstrate the results. 

 

 
Figure 2 - Matlab Report – Commercial tool box version 

 

With GUROBI it is only needed approximately 9 minutes to produce 10 DEEPSO 

generations, against the 1 hour and 12 minutes that was needed without it. 

Incorporating GUROBI the developed Benders Decomposition routine can be considered 

appropriate to a stochastic Unit Commitment problem. Thus, our work exploits the 

advantage of GUROBI.
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3.4 Finding Representative Wind Power Scenarios 

It is common to deliver the wind power forecast as point forecast, which represents 

a single value for each look-ahead time horizon. Decision makers in the operation of a 

power system must take into consideration the uncertainty of wind power. The most 

appropriate approach to consider the wind power uncertainty is by the representation 

of a set of scenarios. In order to calculate risks or conditional values at risk it is needed 

the description of the probability density function. 

In 2007, Pinson et al. [39] proposed a method to generate scenarios of short-term 

wind power production that respect both the predictive distribution and the 

interdependence structure of prediction errors. 

The scenarios data used in this work was created based on the referred technique. 

In order to reduce the number of scenarios, making the UC problem computational 

efficient, a methodology of finding representative wind power scenarios and their 

probabilities for stochastic models, proposed by Sumaili et al. [40] is used. This 

methodology is able to substitute a large scenario set by a smaller set of clusters, each 

one replaced by a representative scenario related to the probability of the cluster it 

represents. Thus, the computational effort associated to the stochastic programming 

algorithms can be reduced. This method produces not only a set of representative 

scenarios, but also orders them by their probability value. Therefore, it is possible to 

select a number of scenarios and understand whether the maximum level of risk 

defined is being satisfied or not. 

3.5 Chapter’s Conclusion 

A simple Unit Commitment problem structure was adopted, considering constraints 

like units’ minimum up and down times and ramping limits. The DEEPSO was shaped 

into the nature of our problem, being able to generate and evaluate in a proper manner 

the UC solutions. Benders Decomposition is used on the evaluation procedure. Through 

a commercial optimization tool, the running times are acceptable to the UC problem. 

The developed UC structure and computational functions are adequate to the study 

we intended to perform. 
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Chapter 4 

Results on the Case Study 

4.1 Description of the Power System 

In this work, a simple example power system is used, composed by 10 generation 

units. Each unit has different capacities (Min and Max), ramp-rates (𝑅𝑘
𝑢𝑝

and 𝑅𝑘
𝑑𝑛), and 

minimum up (𝑇𝑘
𝑢𝑝

) and down (𝑇𝑘
𝑑𝑛) times. Linear production costs are used, 𝐶𝑘. The 

information related to the power system is resumed on table 2. 

 

Table 2 - Generator Data 

Unit 
Min 

(MW) 

Max 

(MW) 

𝑪𝒌 

(€/MWh) 

𝑹𝒌
𝒖𝒑

 

(MW/h) 

𝑹𝒌
𝒅𝒏 

(MW/h) 

𝑻𝟎 

(MW) 

1 150 455 20,335 80 80 300 

2 150 455 21,229 80 80 300 

3 20 130 34,003 26 26 0 

4 20 130 33,420 26 26 0 

5 25 162 28,993 32.4 32.4 0 

6 20 80 32,834 16 16 0 

7 25 85 38,856 17 17 0 

8 10 55 59,673 11 11 0 

9 10 55 61,207 11 11 0 

10 10 55 61,963 11 11 0 
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𝑻𝒌

𝒖𝒑
  

(h) 

𝑻𝒌
𝒅𝒏 

(h) 
CC (€) HC (€) IS (h) HS (h) 

1 8 8 9000 4500 8 5 

2 8 8 10000 5000 8 5 

3 5 5 1100 550 -5 4 

4 5 5 1120 560 -5 4 

5 6 6 1800 900 -6 4 

6 3 3 340 170 -3 2 

7 3 3 520 260 -3 2 

8 1 1 60 30 -1 0 

9 1 1 60 30 -1 0 

10 1 1 60 30 -1 0 

 

The initial state of the generation units is symbolized by the column IS (h); positive 

values signify that the units are on the on status for these number of hours, negative 

values have the same logic but represent the off status. The initial power output is 

represented in 𝑇0. Finally, the start costs are separated in Hot Start Cost, HC, and Cold 

Start Cost, CC. 

In order to consider the possibility of load shedding, wind spilling and generation 

surplus, 3 artificial units were created with extremely high cost coefficients. The over 

inflating of the cost coefficients is due to the desire of avoiding UC solutions that 

permit such possibilities. In the attempt of selecting UC solutions that use at least 40% 

of the wind resources, the wind spilling is limited to 60% of the total wind power 

generation for each operational period. Table 3 presents the referred cost coefficients. 

 

Table 3 – Artificial Units Cost Coefficients 

Unit 𝑪𝒌 (€/MWh) 

Load Shedding 10.000 

Wind Spilling  1.000 

Generation Surplus 10.000 

 

For matter of modeling simplicity, as earlier referred, the electrical network was 

not represented in this study. 

Table 4 contains information related to the level of load and reserve for all of the 

24 periods. 
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Table 4 - Load and Spinning Reserve data 

Period Load (MW) Spinning Reserve (MW) 

1 700 70 

2 750 75 

3 850 85 

4 950 95 

5 1000 100 

6 1100 110 

7 1150 115 

8 1200 120 

9 1300 130 

10 1400 140 

11 1450 145 

12 1500 150 

13 1400 140 

14 1300 130 

15 1200 120 

16 1050 105 

17 1000 100 

18 1100 110 

19 1200 120 

20 1400 140 

21 1300 130 

22 1100 110 

23 900 90 

24 800 80 

 

The spinning reserve levels are assumed to be 10% of the system load levels. In this 

work, the spinning reserve is only considered to confirm the UC constraint 3.3. This 

means that, throughout the dispatch calculation, the effective level of spinning 

reserve is not controlled. To accommodate the wind power uncertainty and volatility 

the system’s ramping capacity is often used to its limit. Therefore, even if the 

scheduled units in a particular operational period are not operating at their maximum 

power capacity, the system’s level of spinning reserve might be compromised because 

it does not remain sufficient ramping capacity. A possible approach to contemplate 

this problem could be the ongoing control of the remaining spinning reserve level 

throughout the dispatch calculation, imputing inflated costs when the referred levels 

are not preserved.
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4.2  Description of the Wind Power Scenarios 

In the analysis, we used data from to two different days – Day1 and Day2. For each 

day there is a point forecast, an actual measured value and a set of possible scenarios 

with their correspondent probability of occurrence. The scenarios were constructed 

according to the methodology presented in the section 3.4 – “Finding Representative 

Wind Power Scenarios”. 

The total capacity of wind power considered in this study case is 700 MW. 

Figures 3 and 4 illustrate the behavior inherent to the days considered, in what 

refers to the point forecast and the measured value. 

 

 
Figure 3 – Point Forecast versus the Actual Measure in the Day1 

 

 
Figure 4 - Point Forecast versus the Actual Measure in the Day2 
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By observation of the last two figures it becomes clear that on the Day2, the error 

between the forecast and the actual measured value has a greater significance. The 

importance of this greater gap will be discussed later in this chapter. 

 

An ideal stochastic method for calculating a UC solution should consider the 

complete set of possible wind power scenarios. Nevertheless, in order to achieve a 

method computationally efficient, we decided to consider a maximum of 5 wind power 

scenarios for each of the 2 stochastic approaches considered in this study - one uses 

the top 5 probable scenarios and the other uses the point forecast plus 4 extreme 

scenarios. 

The following two figures represent the identified top 5 probable scenarios for the 

analysis of Day1 and Day2. 

 

 
Figure 5 – Top 5 Probable Scenarios Day1 

Horizontal axis: Period (hour) / Vertical axis: Power (MW) 
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Figure 6 - Top 5 Probable Scenarios Day2 

Horizontal axis: Period (hour) / Vertical axis: Power (MW) 

 

Table 5 contains the associated probability for each of the 5 more probable 

scenarios represented in the last 2 figures. 

 

Table 5 – Top 5 Probable Scenarios Probabilities 

 Day1 

 Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 

Actual 

Probability 
51% 12,2% 5,4% 3,6% 4,3% 

Normalized 

Probability 
67,55% 14,83% 7,15% 4,77% 5,70% 

      

 Day2 

 Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 

Actual 

Probability 
14,9% 8,7% 6,8% 4,1% 3,9% 

Normalized 

Probability 
38,80% 22,66% 17,71% 10,68% 10,16% 

 

The selected scenarios represent, in the case of Day1, 76,5% of the universe of 

possibilities, while, in the case of Day2, it only represent 38,4%. Therefore, the analysis 

related to the Day2 implies a greater exposition to risk. 

In our study we selected a set of extreme scenarios to evaluate the impact that 

their consideration could have on the search for a stochastic solution. It was 

considered, for each day, a set of scenarios composed by 2 scenarios of deficit of wind 

power and 2 scenarios of surplus, when compared to the expected value (point 

forecast). The selection of the mentioned extreme scenarios was based on the sum of 
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the difference between hourly values of the point forecast and of the scenarios. The 

2 higher values and the 2 lower ones were selected, establishing the described set of 

extreme scenarios. 

 Figures 7, 8, 9 and 10 illustrate the referred extreme scenarios. To improve the 

readability of those figures, each one only contains information of the point forecast, 

a scenario of deficit of wind power and another of surplus. 

 

 
Figure 7 – Extreme Scenarios Day1 – Deficit1 and Surplus1 

 

 
Figure 8 – Extreme Scenarios Day1 – Deficit2 and Surplus2 
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Figure 9 - Extreme Scenarios Day2 – Deficit1 and Surplus1 

 

 
Figure 10 - Extreme Scenarios Day2 – Deficit2 and Surplus2 

 

In the methodology that uses these extreme scenarios in the search of a stochastic 

solution, which will be presented later in this chapter, we assigned 10% probability of 

occurrence for the extreme scenarios and 60% for the point forecast scenario. This 

balance of probabilities, assigning 10% to the extreme scenarios, has the objective of 

allowing an effective adaptation of the UC solutions to these scenarios.
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4.3 Results and Discussion 

In this section we present the results obtained during this work thesis and make a 

concise discussion of them. The analysis will be structured with the main objective of 

displaying a comparison between deterministic and stochastic solutions. Results from 

the data of the two different days will be also confronted in order to evidence the 

impact of the uncertainty in wind power. 

Different studies were carried out for each day. The solutions were calculated 

based on two comparisons:  

 Deterministic versus Stochastic using the top 5 probable scenarios; 

 Deterministic versus Stochastic using the point forecast plus extreme 

scenarios. 

The search for the optimal solutions was realized with 25-50 generations. Due to 

no sufficient tuning of the developed algorithm, combined with a relative small 

dimension of the DEEPSO population and low number of generation, result dispersion 

is expected. Thus, with the objective of having reliable results, the studies are based 

on the results from 5 different runs, and the average value is considered. 

The evaluation of the solutions was made following two methods: 

 Solution evaluation on the Actual Measured Value; 

 Solution evaluation for all the days possible scenarios. 

Once the data from Day2 is considered to be more likely to produce significant 

results to our study2, it will be initially analysed and then compared to the results from 

Day1. The costs presented refer to the final operation cost, including the 

corresponding penalties when applied. 

4.3.1 Deterministic versus Stochastic using Top 5 Probable 

Scenarios 

Below, the results from the analysis made by comparing the deterministic solution 

against the stochastic using the top 5 probable scenario are offered. In order to better 

assess the real value of introducing more than one scenario, the deterministic solution 

is searched based on the most probable scenario. In a latter section, a comparison 

between a stochastic UC solution using the top 5 probable scenarios and a deterministic 

one using the point forecast will be accessible. 

 

Day2: 

Table 6 contains the results from the analyses made to the day2, when comparing 

the optimal solutions on the actual measured values. The numeric results for the 5 

                                                 
2 That belief comes by the greater discrepancy between the point forecast and the actual measured 

values, registered in Day2. 
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runs to the deterministic and stochastic approaches can be analysed in table 6. 

Information on the average and standard deviation is also given. 

 

Table 6 – Day2 Solutions Evaluation for Actual Measured Values – Deterministic vs 

Stochastic 

Run Deterministic Stochastic 

1 432.614,52 € 455.071,23 € 

2 588.524,61 € 423.038,54 € 

3 544.549,35 € 446.544,68 € 

4 527.627,39 € 413.922,56 € 

5 464.897,66 € 428.360,07 € 

   

Average 511.642,71 € 433.387,42 € 

Standard deviation 62.609,38 16.989,37 

 

The performance that each solution had when confronted to all possible scenarios 

was studied. Table 7 presents the produced results. The values on each run refer to 

the expected cost considering all scenarios weighted with the respective probability 

of occurrence. 

 

Table 7 – Solutions Evaluation on All Scenarios – Deterministic vs Stochastic 

Run Deterministic Stochastic 

1 781.850,49 € 690.873,45 € 

2 854.234,27 € 591.933,93 € 

3 883.521,36 € 607.825,53 € 

4 752.747,81 € 695.399,13 € 

5 858.561,67 € 581.012,67 € 

   

Average 826.183,12 € 633.408,94 € 

Standard deviation 55.859,28 55.373,75 

 

The expected operational cost is inferior for the stochastic approach. Both in table 

6 and in table 7, the minimum solution was obtained in the stochastic method and the 

maximum in the deterministic. The average values in both tables show the advantage 

of a stochastic UC calculation. 

For a more detailed analysis, figure 11 represents a chart constructed with the 

accumulated probability of each solution, i.e. stochastic or deterministic, being 

inferior than a certain final operational cost. 
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Figure 11 – Accumulated probabilities – Deterministic versus Stochastic 

Horizontal axis: Operational Costs / Vertical axis: Probability 

 

From the analysis of figure 11, some statements can be made. For instance, for the 

Day2, the stochastic solution has a 65% probability of having a final cost under 449.758€ 

against the 30% of the deterministic one. On the other hand, the stochastic solution 

has a 19% probability of being superior to 496.678€, against to the 56% in the case of 

the deterministic solution. Detailed information on the data label from figure 11 can 

be found in table 30, in the Appendix A. 

 

It is clear that, for a day where the wind power point forecast carries a significant 

error when compared to the actual measured value, a stochastic solution is more 

robust and reliable than a deterministic one, leading to lower operation costs. In a risk 

analysis point of view, for the studied data, a stochastic solution is always desirable 

when compared to a deterministic solution.  

 

Day1: 

The same type of analysis presented for the Day2 will be provided for the Day1. 

Thus, table 8 compares the results obtained from deterministic and stochastic 

solutions. Each solution selected is evaluated considering the wind power output that 

was measured that day.  
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Table 8 – Day1 Solutions Evaluation for Actual Measured Values – Deterministic vs 

Stochastic 

Run Deterministic Stochastic 

1 551.521,24 € 431.738,27 € 

2 493.896,46 € 410.550,44 € 

3 571.070,34 € 436.105,98 € 

4 465.845,71 € 406.129,75 € 

5 451.955,98 € 409.417,83 € 

   

Average 506.857,95 € 418.788,46 € 

Standard deviation 52.398,17 13.995,63 

 

It is clear that stochastic solutions had a better performance than the deterministic 

ones. Table 9 presents the results from the evaluation of the solutions in all possible 

scenarios. 

 

Table 9 - Solutions Evaluation on All Scenarios – Deterministic vs Stochastic 

Run Deterministic Stochastic 

1 1.184.678,14 € 836.006,73 € 

2 1.319.824.24 € 763.140,05 € 

3 998.956,86 € 738.967,03 € 

4 1.207.603,68 € 770.336,70 € 

5 1.549.287,47 € 838.521,86 € 

   

Average 1.252.070,08 € 789.394,48 € 

Standard deviation 202.184,35 45.226,16 

 

For all the 5 runs, the expected operation costs obtained from the stochastic 

solutions are inferior to the produced by the deterministic solutions. Again, the 

minimum values are present in the stochastic method, and the maximum in the 

deterministic. All this supports the idea that a stochastic approach is more robust than 

a deterministic. 

The chart in figure 12 is similar to the represented in figure 11. 
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Figure 12 - Accumulated probabilities – Deterministic versus Stochastic 

Horizontal axis: Operational Costs / Vertical axis: Probability 

 

For matter of readability, no data label was included in the last chart. That data 

can be consulted in table 31, in the Appendix A. For the majority of the operation costs 

considered, the stochastic approach has a greater probability of producing inferior 

operational costs. 

The stochastic approach has produced better results than the deterministic one 

through all the analysis presented so far, and for both of the studied days.  

 

Table 10 presents the expected values of Load Shedding, Spilled Wind and 

Generation Surplus for both days studied, and from deterministic and stochastic 

solutions. The values represent the sum of the average of each scenario for the 5 runs, 

weighted with the respective probability of happing. 

 

Table 10 – Load Shedding, Spilled Wind and Generation Surplus – Deterministic versus 

Stochastic using Top 5 Probable Scenarios 

 Day2 Day1 

 Deterministic Stochastic Deterministic Stochastic 

Load Shedding 

(MWh) 
15,64 10,36 39,46 13,74 

Spilled Wind 

(MWh) 
93,46 16,45 11,38 9,12 

Generation 

Surplus (MWh) 
16,69 0,92 2,38 1,39 

 

Once again, the stochastic approach produces preferable results than the 

deterministic one. For all the parameters evaluated the stochastic approach presents 

lower levels. 
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The following two tables, table 11 and 12, show an evaluation of the deterministic 

and stochastic solutions when under the wind power output conditions considered in 

the extreme scenarios previously introduced. 

 

Table 11 – Day2 Extreme Scenarios Evaluation 

 Day2 

 Deficit1 Deficit2 

 Deterministic Stochastic Deterministic Stochastic 

Load Shedding 

(MWh) 
0 0 79,02 35,05 

Spilled Wind 

(MWh) 
239,93 74,07 0 0 

Generation Surplus 

(MWh) 
0 0 0 0 

 Surplus1 Surplus2 

 Deterministic Stochastic Deterministic Stochastic 

Load Shedding 

(MWh) 
0 0 177,79 0 

Spilled Wind 

(MWh) 
246,65 125,01 315,6 145,3 

Generation Surplus 

(MWh) 
0 0 77,78 72,78 

 

Table 12 – Day1 Extreme Scenarios Evaluation 

 Day1 

 Deficit1 Deficit2 

 Deterministic Stochastic Deterministic Stochastic 

Load Shedding 

(MWh) 
0 0 54,67 0 

Spilled Wind 

(MWh) 
0 0 0 0 

Generation Surplus 

(MWh) 
0 0 0 0 

 Surplus1 Surplus2 

 Deterministic Stochastic Deterministic Stochastic 

Load Shedding 

(MWh) 
0 0 290,89 104,94 

Spilled Wind 

(MWh) 
200,67 401,13 100 97,52 

Generation Surplus 

(MWh) 
120,43 115,21 22,52 0 
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The results confirm the robustness that a stochastic solution has when compared 

to a deterministic one. The results from the stochastic strategy for Day2 are preferable 

in all the analyzed scenarios. The same can be said for Day1, with the exception of the 

scenario “Surplus1”, where the stochastic solutions reveals higher levels of spilled 

wind. As expected, the data from Day2 produced more significant results to investigate 

the importance of consider a stochastic approach. 

Analyzing the results associated to the extreme scenario “Surplus2”, where it 

occurs an excess of wind power generation relatively to the point forecast, there are 

expected significant levels of load shedding. These surprising results have its 

explanation on the extreme wind power variation in subsequent operational periods, 

which troubles the system’s operation, namely because of the limited ramping capacity 

of the thermal units. For instance, at a particular operational period with high level of 

wind power generation, the conventional units operate with low output. If in the 

subsequent operational period an increase of load demand occurs combined with a 

pronounced reduction in the wind power generation, the system’s ramping up capacity 

has to compensate both events. Therefore, it might be needed to proceed to load 

shedding. Also, for the Day2, in the extreme scenario “Deficit1” it is expected to occur 

wind spilling. Again, the system’s limited ramping capacity is the main responsible. An 

inverse argument to the one stated before can be made. In an operational period of 

low wind power generation, the conventional units have to operate at a significant 

output levels. If in the subsequent period the load demand decreases and the wind 

power generation suddenly increases, the system’s ramping down capacity might not 

be enough to ensure the power balance. 

4.3.2 Deterministic versus Stochastic using the Point Forecast 

plus Extreme Scenarios 

In this section the results presented are obtained using a different strategy in the 

stochastic search. Instead of using the top 5 more probable scenarios, it is used the 

point forecast plus 4 extreme scenarios – chosen in such a way that deficit and surplus 

of wind power are represented. The search for the deterministic solutions is based on 

the point forecast values, instead of the most probable scenario used in the previous 

strategy. 

The same analysis’ structure from the last section is used on this one. 

 

Day2: 

Table 13 contains information related to the confrontation between the established 

deterministic and stochastic solutions and the Actual Measured Values. 
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Table 13 – Day2 Solutions Evaluation for Actual Measured Values – Deterministic vs 

Stochastic 

Run Deterministic Stochastic 

1 474.041,52 € 568.217,42 € 

2 427.629,84 € 597.404,30 € 

3 532.030,45 € 515.340,14 € 

4 449.055,12 € 497.516,58 € 

5 461.963,45 € 576.768,15 € 

   

Average 476.938,67 € 551.049,32 € 

Standard deviation 32.234,61 42.561,38 

  

In this case, the deterministic approach led to favourable results, when the 

solutions are evaluated for the measured values of wind power generation. Here, the 

solution with the minimum operational cost comes from the deterministic method, and 

the one with the maximum from the stochastic. Complementarily, the following table 

shows the results that deterministic and stochastic solutions had when evaluated for 

all possible scenarios.  

 

Table 14 – Day2 Solutions Evaluation on All Scenarios – Deterministic vs Stochastic 

Run Deterministic Stochastic 

1 943.803,67 € 758.114,26 € 

2 1.135.662,13 € 772.965,17 € 

3 844.778,95 € 919.263,26 € 

4 943.211,32 € 963.151,41 € 

5 839.570,95 € 832.791,94 € 

   

Average 941.405,40 € 849.257,21 € 

Standard deviation 119.845,33 89.821,15 

 

The difference between the average values in this case is less significant than the 

registered in table 7, when the top 5 scenarios were used on the search of stochastic 

solutions. Either way, the average of these stochastic solutions is inferior to the 

deterministic, and the minimum expected value belongs to a stochastic solution and 

the maximum to a deterministic. 
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Figure 13 – Accumulated probabilities – Deterministic versus Stochastic 

Horizontal axis: Operational Costs / Vertical axis: Probability 

 

This chart is similar to the one presented in figure 11. Comparing the two of them, 

it is evident that the benefit of using stochastic search has lower significance. In fact, 

if it can be said that the stochastic solution leads to operation costs inferior to 

452.790€ in 31% of the cases against the 15% of the deterministic, it is also true that 

there are 41% chances that the operation costs would be superior to 641.833€ with a 

stochastic solution and only 30% with a deterministic one. Data label information is 

present in table 32, in the Appendix A. 

 

Day1: 

Results related to the study carried out for the data of Day1 will be presented in 

this section. Table 15 holds the results from the deterministic and stochastic solutions 

evaluated considering the actual measured values for Day1. 

 

Table 15 – Day1 Solutions Evaluation for Actual Measured Values – Deterministic vs 

Stochastic 

Run Deterministic Stochastic 

1 588.459,32 € 589.260,16 € 

2 586.341,19 € 588.275,73 € 

3 589.753,65 € 584.168,73 € 

4 584.935,24 € 589.052,02 € 

5 582.644,01 € 600.465,87 € 

   

Average 586.426,68 € 590.244,50 € 

Standard deviation 2.816,94 6.075,74 
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As registered for the Day2, the results on the table 15 show that the deterministic 

solution would represent lower operational costs for the measured conditions of wind 

power generation. 

Table 16 presents the results obtained when the selected solutions were evaluated 

for all possible scenarios. Once again, in this strategy, the deterministic approach 

produces better results.  

 

Table 16 – Day1 Solutions Evaluation on All Scenarios – Deterministic vs Stochastic 

Run Deterministic Stochastic 

1 1.125.075,79 € 1.060.759,26 € 

2 813.749,44 € 1.122.415,10 € 

3 913.729,99 € 1.124.094,91 € 

4 833.761,18 € 931.221,19 € 

5 868.331,36 € 941.721,13 € 

   

Average 910.929,55 € 1.036.042,32 € 

Standard deviation 125.578,65 94.483,33 

 

In addition, the following chart contains the accumulated probabilities that the 

solutions from deterministic and stochastic methods have of being under determined 

operation costs. In the Appendix A, table 33 contains the data label information of the 

chart below.  

 

 
Figure 14 - Accumulated probabilities – Deterministic versus Stochastic 

Horizontal axis: Operational Costs / Vertical axis: Probability 

 

From the analysis of figure 14 and figure 12 it can be understood that the use of 

the point forecast plus the 4 extreme scenarios on the search of stochastic solutions 

leads to poorer results than those obtained in the last section, when compared to 

deterministic solutions. The last chart was constructed with information of “run 5”. As 
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it can be seen in table 16, the deterministic solution has a smaller expected final 

operation cost. The obtained results are ambiguous. The stochastic solution has a 76% 

chance of leading to operation costs under 604.363€, against the 66% of the 

deterministic one. On the other hand, the deterministic strategy does not produces 

results superior to 2.932.201€, while the stochastic strategy has 6% chance of being 

above that value. In the Appendix A, table 33 offers the complete information on the 

last chart accumulated probabilities.  

 

 

Table 17 is analogous to table 10 and contains the expected values of Load 

Shedding, Spilled Wind and Generation Surplus for both studied days, and from 

deterministic and stochastic solutions, when using the point forecast and extreme 

scenarios to search for a stochastic solution. 

 

Table 17 – Load Shedding, Spilled Wind and Generation Surplus – Deterministic versus 

Stochastic using Point Forecast plus Extreme Scenarios 

 Day2 Day1 

 Deterministic Stochastic Deterministic Stochastic 

Load Shedding 

(MWh) 
20,32 20,02 25,39 32,24 

Spilled Wind 

(MWh) 
96,63 105,78 20,32 16,45 

Generation 

Surplus (MWh) 
9,63 8,36 2,12 3,42 

 

From the analysis of table 17 it can be concluded that, to the operation days 

considered it is not possible to identify the better approach. As similar to the later 

analysis in this section, the deterministic UC solution presents, in some cases, better 

results than the stochastic, and in other cases worst results. Comparing the results in 

the previous table to those registered in table 10, it is evident that the stochastic 

strategy of using the top 5 more probable scenarios is preferable to the one used on 

this section. 

 

Table 18 and 19 show an evaluation of the deterministic and stochastic solutions 

when under the wind power output conditions considered in the extreme scenarios 

previously introduced. 
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Table 18 – Day2 Extreme Scenarios Evaluation 

 Day2 

 Deficit1 Deficit2 

 Deterministic Stochastic Deterministic Stochastic 

Load Shedding (MWh) 181,15 302,37 113,93 68,23 

Spilled Wind (MWh) 0 0 0 0 

Generation Surplus 

(MWh) 
0 0 0 0 

 Surplus1 Surplus2 

 Deterministic Stochastic Deterministic Stochastic 

Load Shedding (MWh) 0 179,53 0 0 

Spilled Wind (MWh) 305,97 378,76 211,65 187,01 

Generation Surplus 

(MWh) 
52,78 72,78 0 0 

 

Table 19 – Day1 Extreme Scenarios Evaluation 

 Day1 

 Deficit1 Deficit2 

 Deterministic Stochastic Deterministic Stochastic 

Load Shedding (MWh) 0 245,53 181,27 0 

Spilled Wind (MWh) 0 0 0 0 

Generation Surplus 

(MWh) 
0 0 0 0 

 Surplus1 Surplus2 

 Deterministic Stochastic Deterministic Stochastic 

Load Shedding (MWh) 150,66 503,83 111,26 6,17 

Spilled Wind (MWh) 100,26 100 465,54 343,31 

Generation Surplus 

(MWh) 
52,52 42,52 89,37 160,21 

 

The results confirm that this stochastic approach cannot be considered neither 

preferable nor inferior to the deterministic one. The levels of load shedding, spilled 

wind and generation surplus are, in some cases, inferior in the deterministic approach, 

and superior in the others.  

Comparing the results from the stochastic approach in these tables to the 

correspondent in tables 11 and 12, the benefit of using the top 5 probable scenarios 

comes clear. 

As mentioned and explained in the previous section, even in scenarios of wind 

power surplus, load shedding might occur. 
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4.3.3 Evaluation on Extreme Scenarios 

In this section we expose the results from the evaluation of the deterministic and 

stochastic solutions on a set of selected extreme scenarios. This set was created by 

the selection of the scenarios that had higher values on the sum of the absolute values 

of the difference between its hourly values and the point forecast. A set of extreme 

scenarios was created for each day. The deterministic solution was based on the point 

forecast, for both the table that follow. 

For Day1 17 extreme scenarios were selected, accumulating a probability of 2,1% 

of the entire universe of possibilities; Day2 produced 30 extreme scenarios that 

represent 6,6% of all possible scenarios. 

This evaluation on extreme scenarios has the main objective of verifying which one 

of the stochastic approaches adapts properly to these unseen conditions. 

Having proceeded to the evaluation on all the identified extreme scenarios, the 

following tables contain the expected values of load shedding, spilled wind and 

generation surplus using the strategies presented in 4.3.1 and 4.3.2. 

 

Table 20 – Evaluation on Extreme Scenarios – Deterministic vs Stochastic Top 5 

Probable Scenarios 

 Day2 Day1 

 Deterministic Stochastic Deterministic Stochastic 

Load 

Shedding (MWh) 
11,91 8,686 67,97 72,035 

Spilled Wind 

(MWh) 
222,22 70,113 88,08 64,713 

Generation 

Surplus (MWh) 
25,09 4,476 21,82 23,817 

 

Table 21 - Evaluation on Extreme Scenarios – Deterministic vs Stochastic Point 

Forecast plus Extreme Scenarios 

 Day2 Day1 

 Deterministic Stochastic Deterministic Stochastic 

Load 

Shedding (MWh) 
11,91 6,19 67,97 58,61 

Spilled Wind 

(MWh) 
222,22 258,51 88,08 91,39 

Generation 

Surplus (MWh) 
25,09 17,92 21,82 28,18 

 

Analyzing table 20 and 21 we conclude that the stochastic approach of using the 

top 5 probable scenarios produces preferable results. In fact, for Day2, which is the 

day where the point forecast is more distinct from the registered wind power values, 
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this stochastic approach led to inferior levels of load shedding, spilled wind and 

generation surplus when compared to the deterministic approach. 

As observed in the earlier sections, in the previous tables, the stochastic approach 

that uses the point forecast plus 4 extreme scenarios does not produce consistently 

better results than those achieved with the deterministic strategy.  

Comparing the 2 stochastic strategies, the one using the top 5 probable scenarios 

presents lower levels of spilled wind and generation surplus, for the 2 days. The point 

forecast plus extreme scenarios stochastic approach led to inferior levels of load 

shedding. The better results on the levels of load shedding obtained by the latter 

strategy are not as significant as the ones obtained by the top 5 probable approach on 

the levels of spilled wind and generation surplus. Thus, we conclude that the approach 

that uses the more probable scenarios instead of the more extreme, adapts properly 

to this set of extreme scenarios. 
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4.3.4 Final Unit Commitment Solutions 

The Unit Commitment solutions presented next were calculated after 100 DEEPSO 

generations. The comparison between the UC stochastic solutions of the top 5 more 

probable scenarios and the point forecast plus extreme scenarios is presented below. 

Results from the deterministic UC solution using the point forecast are also present in 

this section. 

 

Day2: 

The UC solutions calculated for the Day2 are presented next. 

 

Table 22 – Day2 Final Stochastic Unit Commitment Solution, Top 5 Probable Scenarios 

 Stochastic UC – Top 5 Probable Scenarios 

 Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10 

𝒕𝟏 1 1 0 1 0 0 1 1 0 0 

𝒕𝟐 1 1 0 1 1 0 1 1 0 0 

𝒕𝟑 1 1 0 1 1 0 1 0 1 0 

𝒕𝟒 1 1 1 1 1 0 0 1 0 0 

𝒕𝟓 1 1 1 1 1 1 0 0 1 0 

𝒕𝟔 1 1 1 1 1 1 0 0 0 1 

𝒕𝟕 1 1 1 1 1 1 0 1 1 1 

𝒕𝟖 1 1 1 1 1 1 1 0 0 1 

𝒕𝟗 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟎 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟏 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟐 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟑 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟒 1 1 1 1 1 1 1 1 0 0 

𝒕𝟏𝟓 1 1 1 1 1 1 1 1 0 0 

𝒕𝟏𝟔 1 1 1 1 1 1 1 0 1 0 

𝒕𝟏𝟕 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟖 1 1 1 1 1 1 1 0 0 0 

𝒕𝟏𝟗 1 1 1 1 1 1 1 0 0 1 

𝒕𝟐𝟎 1 1 1 1 1 1 1 1 1 0 

𝒕𝟐𝟏 1 1 1 1 1 1 1 1 1 1 

𝒕𝟐𝟐 1 1 1 1 1 0 1 1 0 0 

𝒕𝟐𝟑 1 0 1 1 1 0 1 1 1 0 

𝒕𝟐𝟒 1 0 1 0 1 0 0 1 1 1 
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Table 23 – Day2 Final Stochastic Unit Commitment Solution, Point Forecast plus 

Extreme Scenarios 

 Stochastic UC – Point Forecast plus Extreme Scenarios 

 Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10 

𝒕𝟏 1 1 1 0 1 1 0 0 0 0 

𝒕𝟐 1 1 1 1 1 1 0 0 0 0 

𝒕𝟑 1 1 1 1 1 1 1 0 1 0 

𝒕𝟒 1 1 1 1 1 1 1 0 0 1 

𝒕𝟓 1 1 1 1 1 1 1 1 1 0 

𝒕𝟔 1 1 1 1 1 1 1 1 0 1 

𝒕𝟕 1 1 1 1 1 1 1 0 1 1 

𝒕𝟖 1 1 1 1 1 1 1 0 1 1 

𝒕𝟗 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟎 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟏 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟐 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟑 1 1 1 1 1 1 1 0 1 1 

𝒕𝟏𝟒 1 1 1 1 1 1 1 0 1 1 

𝒕𝟏𝟓 1 1 1 1 1 1 1 1 0 0 

𝒕𝟏𝟔 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟕 1 1 1 1 1 1 1 0 1 1 

𝒕𝟏𝟖 1 1 1 1 1 1 1 1 0 0 

𝒕𝟏𝟗 1 1 1 1 1 1 1 0 1 0 

𝒕𝟐𝟎 1 1 1 1 1 1 1 1 1 1 

𝒕𝟐𝟏 1 1 1 1 1 1 1 0 1 1 

𝒕𝟐𝟐 1 1 1 1 1 1 1 0 0 0 

𝒕𝟐𝟑 1 1 1 1 1 0 1 0 0 0 

𝒕𝟐𝟒 1 1 0 0 0 0 0 1 1 0 
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Table 24 – Day2 Final Deterministic Unit Commitment Solution, Point Forecast 

 Deterministic UC – Point Forecast 

 Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10 

𝒕𝟏 1 1 0 1 1 0 1 0 1 0 

𝒕𝟐 1 1 1 1 1 1 1 1 1 0 

𝒕𝟑 1 1 1 1 1 1 1 0 0 1 

𝒕𝟒 1 1 1 1 1 1 1 0 0 0 

𝒕𝟓 1 1 1 1 1 1 1 0 0 1 

𝒕𝟔 1 1 1 1 1 1 1 0 0 0 

𝒕𝟕 1 1 1 1 1 1 1 0 0 0 

𝒕𝟖 1 1 1 1 1 1 1 0 0 0 

𝒕𝟗 1 1 1 1 1 1 1 0 0 1 

𝒕𝟏𝟎 1 1 1 1 1 1 1 0 0 1 

𝒕𝟏𝟏 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟐 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟑 1 1 1 1 1 1 1 0 1 1 

𝒕𝟏𝟒 1 1 1 1 1 1 1 0 1 0 

𝒕𝟏𝟓 1 1 1 1 1 1 1 0 0 0 

𝒕𝟏𝟔 1 1 1 1 1 1 1 1 1 0 

𝒕𝟏𝟕 1 1 1 1 1 1 1 0 0 1 

𝒕𝟏𝟖 1 1 1 1 1 1 1 0 0 0 

𝒕𝟏𝟗 1 1 1 1 1 1 1 0 1 0 

𝒕𝟐𝟎 1 1 1 1 1 1 1 0 1 0 

𝒕𝟐𝟏 1 1 1 1 1 1 1 1 0 1 

𝒕𝟐𝟐 1 1 1 1 1 1 1 0 0 0 

𝒕𝟐𝟑 1 1 1 1 1 1 1 0 1 0 

𝒕𝟐𝟒 1 0 1 0 1 1 0 1 0 0 

 

Comparing the 3 UC solutions, the main difference between them is the schedule 

of the last 3 units (units that have superior cost coefficients). For most of the operation 

periods, the number of these units that are scheduled to operate is greater in the 

stochastic solutions. As the stochastic methods have to adapt to several scenarios, they 

need an extra ramping capacity compared to what happens for the deterministic 

method. In spite of superior cost coefficients, this peaking units allow the stochastic 

UC solutions to adapt better to unseen scenarios, preventing them of the possibility of 

load shedding, spilled wind and generation surplus. 

Figure 15 represents a histogram which compares the number of the possible 

scenarios that would be between determined operational costs, for each of the 3 

approaches. 
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Figure 15 – Comparative Histogram – All approaches, Final UC Solutions 

Horizontal axis: Operational Costs / Vertical axis: Number of Scenarios 

 

The stochastic solutions, mainly the one using the top 5 probable scenarios, have 

more scenarios in the intervals of lower operational costs than the deterministic. For 

the intervals of superior operational costs the deterministic solution accounts for more 

scenarios. As each scenario has a related probability, the last histogram could lead to 

mistaking conclusions. Thus, figure 16 presents the accumulated probabilities that 

each method has on producing operational results under certain value. Table 34 in 

Appendix A contains the data label from the following chart. 

 

 
Figure 16 - Accumulated Probabilities – All Approaches, Final Solutions 

Horizontal axis: Operational Costs / Vertical axis: Probability 
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From the analysis of figure 16, the supremacy of the stochastic solutions is perfectly 

evident. The stochastic methods have always higher probability of producing 

operational costs inferior to the determined values. Once again, the stochastic 

approach that considers the top 5 probable scenarios is preferable to the one using the 

point forecast plus 4 extreme scenarios. 

 

Table 25 presents the expected values of load shedding, spilled wind and 

generation surplus for each of the 3 strategies adopted.  

 

Table 25 – Day2 Load Shedding, Spilled Wind and Generation Surplus – All Approaches 

 Day2 

 Deterministic Stochastic Top5 Stochastic Extremes 

Load 

Shedding (MWh) 
40,10 10,47 11,30 

Spilled Wind 

(MWh) 
117,18 16,05 97,98 

Generation 

Surplus (MWh) 
14,48 0,68 8,99 

 

In line with the previous analysis, the stochastic approaches led to preferable 

results. Inferior levels of load shedding, spilled wind and generation surplus were 

registered for the stochastic methods, particularly for the one using the top 5 more 

probable scenarios. 

 

Day1: 

Here, the selected UC solutions for Day1 are presented. 
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Table 26 – Day1 Final Stochastic Unit Commitment Solution, Top 5 Probable Scenarios 

 Stochastic UC – Top 5 Probable Scenarios 

 Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10 

𝒕𝟏 1 1 0 1 0 0 0 0 0 0 

𝒕𝟐 1 1 1 1 1 1 1 1 1 0 

𝒕𝟑 1 1 1 1 1 1 1 0 0 1 

𝒕𝟒 1 1 1 1 1 1 1 0 0 1 

𝒕𝟓 1 1 1 1 1 1 1 0 1 0 

𝒕𝟔 1 1 1 1 1 1 1 1 1 1 

𝒕𝟕 1 1 1 1 1 1 1 1 1 1 

𝒕𝟖 1 1 1 1 1 1 1 1 0 1 

𝒕𝟗 1 1 1 1 1 1 1 0 1 0 

𝒕𝟏𝟎 1 1 1 1 1 1 1 0 1 1 

𝒕𝟏𝟏 1 1 1 1 1 1 1 1 1 0 

𝒕𝟏𝟐 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟑 1 1 1 1 1 1 1 0 1 1 

𝒕𝟏𝟒 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟓 1 1 1 1 1 1 1 1 0 0 

𝒕𝟏𝟔 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟕 1 1 1 1 1 1 1 0 1 1 

𝒕𝟏𝟖 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟗 1 1 1 1 1 1 1 0 1 0 

𝒕𝟐𝟎 1 1 1 1 1 1 1 1 1 1 

𝒕𝟐𝟏 1 1 1 1 1 1 1 1 0 0 

𝒕𝟐𝟐 1 1 1 1 1 1 1 0 1 0 

𝒕𝟐𝟑 1 1 1 1 1 1 1 0 1 0 

𝒕𝟐𝟒 1 0 1 1 1 1 0 1 1 0 
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Table 27 – Day1 Final Stochastic Unit Commitment Solution, Point Forecast plus 

Extreme Scenarios 

 Stochastic UC – Point Forecast plus Extreme Scenarios 

 Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10 

𝒕𝟏 1 1 1 0 1 0 1 0 0 1 

𝒕𝟐 1 1 1 1 1 0 1 1 0 0 

𝒕𝟑 1 1 1 1 1 1 1 0 1 1 

𝒕𝟒 1 1 1 1 1 1 1 0 0 1 

𝒕𝟓 1 1 1 1 1 1 1 0 0 1 

𝒕𝟔 1 1 1 1 1 1 1 0 1 1 

𝒕𝟕 1 1 1 1 1 1 1 1 1 0 

𝒕𝟖 1 1 1 1 1 1 1 1 1 0 

𝒕𝟗 1 1 1 1 1 1 1 0 1 1 

𝒕𝟏𝟎 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟏 1 1 1 1 1 1 1 1 1 0 

𝒕𝟏𝟐 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟑 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟒 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟓 1 1 1 1 1 1 1 0 0 1 

𝒕𝟏𝟔 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟕 1 1 1 1 1 1 1 0 0 1 

𝒕𝟏𝟖 1 1 1 1 1 1 1 0 1 1 

𝒕𝟏𝟗 1 1 1 1 1 1 1 0 1 0 

𝒕𝟐𝟎 1 1 1 1 1 1 1 1 1 1 

𝒕𝟐𝟏 1 1 1 1 1 1 1 1 0 1 

𝒕𝟐𝟐 1 1 1 1 1 1 1 0 0 0 

𝒕𝟐𝟑 1 1 1 1 1 1 1 1 1 0 

𝒕𝟐𝟒 1 1 0 0 0 0 0 1 1 1 
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Table 28 – Day1 Final Deterministic Unit Commitment Solution, Point Forecast 

 Deterministic UC – Point Forecast 

 Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10 

𝒕𝟏 1 1 1 1 1 1 0 0 0 0 

𝒕𝟐 1 1 1 1 1 1 0 0 0 0 

𝒕𝟑 1 1 1 1 1 1 0 0 0 0 

𝒕𝟒 1 1 1 1 1 1 1 0 0 0 

𝒕𝟓 1 1 1 1 1 1 1 0 1 1 

𝒕𝟔 1 1 1 1 1 1 1 0 1 0 

𝒕𝟕 1 1 1 1 1 1 1 0 0 1 

𝒕𝟖 1 1 1 1 1 1 1 0 0 1 

𝒕𝟗 1 1 1 1 1 1 1 0 0 1 

𝒕𝟏𝟎 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟏 1 1 1 1 1 1 1 1 1 0 

𝒕𝟏𝟐 1 1 1 1 1 1 1 1 1 1 

𝒕𝟏𝟑 1 1 1 1 1 1 1 0 1 0 

𝒕𝟏𝟒 1 1 1 1 1 1 1 0 1 1 

𝒕𝟏𝟓 1 1 1 1 1 1 1 1 1 0 

𝒕𝟏𝟔 1 1 1 1 1 1 1 0 1 0 

𝒕𝟏𝟕 1 1 1 1 1 1 1 1 0 1 

𝒕𝟏𝟖 1 1 1 1 1 1 1 0 0 0 

𝒕𝟏𝟗 1 1 1 1 1 1 1 0 1 0 

𝒕𝟐𝟎 1 1 1 1 1 1 1 1 1 1 

𝒕𝟐𝟏 1 1 1 1 1 1 1 0 1 0 

𝒕𝟐𝟐 1 1 1 1 1 1 1 0 0 1 

𝒕𝟐𝟑 1 1 1 1 1 1 1 0 0 0 

𝒕𝟐𝟒 1 1 1 0 0 0 0 0 1 0 

 

As observed for Day2, the schedule of the last 3 units is the main dissimilarity in 

the final Unit Commitment solutions. Again, the stochastic UC solutions present more 

of these peak units scheduled than the deterministic. Thus, more ramping capability 

is assured, allowing a more robust UC solution. Figure 17 is similar to figure 15, and 

consists on a histogram that compares the number of the possible scenarios that are 

between determined operational costs, for each of the 3 approaches. 
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Figure 17 – Comparative Histogram – All approaches, Final UC Solutions 

Horizontal axis: Operational Costs / Vertical axis: Number of Scenarios 

 

Analyzing the previous figure it can be observed that for the lower operational costs 

there are more stochastic scenarios than deterministic. On the other hand, for the 

superior operational costs, the deterministic approach accounts for more scenarios.  

 

 
Figure 18 - Accumulated Probabilities – All Approaches, Final Solutions 

Horizontal axis: Operational Costs / Vertical axis: Probability 

 

Figure 18 shows that, for the majority of the intervals considered, the stochastic 

approaches have more probability of producing results under the determined values of 

operational costs. Comparing to the results on figure 16, the supremacy of the 

stochastic strategies is less significant. Also, the stochastic approach that considers 

the point forecast plus 4 extreme scenarios presents better results than the other 

stochastic one for operational costs superior to 666.455€. 
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Table 29 – Day1 Load Shedding, Spilled Wind and Generation Surplus – All Approaches 

 Day1 

 Deterministic Stochastic Top5 Stochastic Extremes 

Load 

Shedding (MWh) 
20,15 17,81 13,93 

Spilled Wind 

(MWh) 
17,73 8,68 14,44 

Generation 

Surplus (MWh) 
3,29 1,09 2,68 

 

Table 29 contains the expected values of load shedding, spilled wind and generation 

surplus for all the 3 approaches. Again, the stochastic methods are preferable to the 

deterministic. The levels of spilled wind in this case are significant lower than the 

registered in table 25. This can be explained by the inferior wind power generation of 

Day1, and also because of the more difference between the forecasts and actual 

measured values for Day2. 

 

4.4 Chapter’s Conclusion 

The study presented in this chapter confirms the benefits of considering a 

stochastic approach on the Unit Commitment problem. The stochastic strategy of using 

the top 5 probable scenarios proved to be the best approach.
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Chapter 5 

Conclusion 

The increasing share of renewable energy, namely wind power generation, brings 

new challenges and concerns to power systems operators. They have to guarantee the 

power demand and generation balance. For systems with high presence of wind power 

generation, the maintenance of this balance can be problematic. Periods with high 

levels of wind power generation combined with low demand create over-generation 

that causes difficulties to the system operation. As consequence, wind curtailments 

are expected, representing a waste of natural resources. 

Studies refer that good wind forecasting has an important influence on the 

reduction of the Unit Commitment costs. Another solution suggested is the aggregation 

of wind plants over wider geographical areas providing a mechanism capable of 

reducing wind plant variability. Recent studies indicate that taking into account the 

stochastic nature of the wind in the Unit Commitment procedure, more robust 

schedules could be produced. The ramping capacity of the power systems is pointed 

as being a crucial factor on the accommodation of wind power generation. 

In this work we propose a computational stochastic method of calculating a Unit 

Commitment solution. A variation of EPSO, called DEEPSO, is used to create new UC 

solutions through the calculation process. A routine using Benders Decomposition was 

developed in order to evaluate the generated UC solution, calculating an optimal 

economic dispatch. The implemented stochastic UC algorithm takes about 2 hours to 

find a final solution, after 100 DEEPSO generations and considering 5 different wind 

power scenarios. As the Unit Commitment is a day-ahead procedure, this is an 

acceptable time, once it refers to a personal computer with a 2.67GHz processor. 

The impact that the wind power forecasting has on the UC problem was evaluated 

by introducing wind power output scenarios. Performances of the deterministic and 

stochastic solutions are compared based on the actual measured values of wind power 

generation and based on a risk evaluation that considers all possible wind power 

scenarios. Two stochastic approaches were considered. One using the top 5 more 

probable scenarios, and the other using the point forecast plus 4 extreme scenarios. 
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The results indicate that the stochastic Unit Commitment is more robust than a 

deterministic one. The stochastic approach that considers the top 5 probable scenarios 

produced the best results. It proved to be preferable to the deterministic method. For 

the majority of the cases, this stochastic method of calculating the UC presented 

inferior expected operational costs, load shedding, spilled wind, and generation 

surplus levels. The stochastic approach that uses the point forecast plus 4 extreme 

scenarios led to poorer results than the other stochastic method. No supremacy over 

the deterministic method could be recognized for this stochastic approach. 

With the study carried out and with the obtained results the advantage of adopting 

a stochastic method of calculating the Unit Commitment was clearly demonstrated. A 

stochastic UC solution adapts better to extreme and unseen wind power scenarios, 

which facilitates the system operation and leads to lower operational costs. As levels 

of load shedding, spilled wind, and generation surplus are inferior in a stochastic 

approach (and consequent reserve requirements also inferior), along with less costly 

system operation, we conclude that the systems operators should embrace a stochastic 

method of calculating the units schedule. 

The developed UC calculation tool, combining the DEEPSO with the Benders 

decomposition, showed its viability. This combination is expected to present great 

performances with the increasing of the complexity of the power systems analyzed. 

Benders Decomposition technique is recognized to be much faster than the 

conventional simplex formulations, especially for large scale problems. In this work we 

attempted to prove the feasibility of this type of algorithm structure. In what concerns 

its efficiency, much can still be done. First, coding optimization is needed. Taking 

advantage of the Benders Decomposition routine that was developed, post-

optimization is possible. As the domain of the dual problem is fixed, past solutions can 

be used as start points, reducing the computing time. Moreover, parallel computing is 

a possibility, decreasing dramatically the computational time. With the use of more 

than one computer, the DEEPSO population can be distributed, and the computing time 

divided by all the computers. Implementing all this features, we could increase the 

number of generation on the DEEPSO algorithm, which can increase the efficiency of 

the developed tool. Also, quadratic generation cost functions could be linearized 

through the piecewise technique, which implies the increase of variables in the 

Benders Decomposition routine. 

More exhaustive studies are expected in future works. A medium-term 

collaboration with systems operators would be of great value, permitting the access of 

real operational data and assessing in a more realistic manner the benefit of 

considering a stochastic Unit Commitment. A more profound study that considers the 

electrical grid and the respective power flow constraints could help to expose and 

confirm the supremacy of the stochastic method over the deterministic. More detailed 

reserve constraints should be considered in future works. Namely, the reserve levels 

throughout the dispatch calculation should be controlled, as its reduction causes a 

decrease in the system reliability. Thus, dispatch solutions that maintain the specified 

levels of spinning reserve should be favored against others that do not.
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Appendix A - Tables 

Table 30 - Data from Day2 accumulated probabilities – Deterministic versus Stochastic 

using top 5 probable scenarios 

 % under certain value 

 Deterministic Stochastic 

€         387.197 0% 0% 

€         402.837 0% 6% 

€         418.837 15% 24% 

€         434.118 16% 39% 

€         449.758 30% 65% 

€         465.398 35% 74% 

€         481.038 40% 77% 

€         496.678 44% 81% 

€         512.318 46% 83% 

€         527.958 48% 87% 

€         543.599 52% 87% 

€         559.239 59% 88% 

€         574.879 60% 89% 

€         590.519 67% 89% 

€         606.159 68% 90% 

€         621.799 70% 90% 

€         637.439 72% 90% 

€         653.080 75% 90% 

€         668.720 77% 91% 

€         684.360 77% 91% 

€         700.000 78% 92% 

€     2.767.391 97% 98% 

€     4.834.781 100% 100% 

€     6.902.172 100% 100% 

€     8.969.563 100% 100% 

€   11.036.953 100% 100% 
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Table 31 – Data from Day1 accumulated probabilities – Deterministic versus Stochastic 

using top 5 probable scenarios 

 % under certain value 

 Deterministic Stochastic 

€         524.840 0% 0% 

€         548.598 1% 1% 

€         572.356 72% 70% 

€         596.114 75% 79% 

€         619.872 76% 83% 

€         643.630 76% 84% 

€         667.388 76% 84% 

€         691.146 77% 84% 

€         714.904 77% 85% 

€         738.662 77% 86% 

€         762.420 77% 86% 

€         786.178 77% 87% 

€         809.936 77% 88% 

€         833.694 78% 88% 

€         857.452 78% 88% 

€         881.210 78% 90% 

€         904.968 79% 90% 

€         928.726 79% 90% 

€         952.484 80% 90% 

€         976.242 80% 90% 

€     1.000.000 80% 91% 

€     2.500.516 91% 99% 

€     4.001.033 95% 100% 

€     5.501.549 100% 100% 

€     7.002.066 100% 100% 

€     8.502.582 100% 100% 

€     8.502.582 100% 100% 
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Table 32 - Data from Day2 accumulated probabilities – Deterministic versus Stochastic 

using Point Forecast plus Extreme Scenarios 

 % under certain value 

 Deterministic Stochastic 

€         409.164 0% 0% 

€         423.706 1% 0% 

€         438.248 4% 24% 

€         452.790 15% 31% 

€         467.331 31% 32% 

€         481.873 36% 37% 

€         496.415 40% 40% 

€         510.957 45% 41% 

€         525.499 51% 45% 

€         540.040 53% 45% 

€         554.582 54% 46% 

€         569.124 55% 47% 

€         583.666 56% 48% 

€         598.208 57% 48% 

€         612.749 60% 52% 

€         627.291 69% 58% 

€         641.833 70% 59% 

€         656.375 70% 66% 

€         670.916 73% 67% 

€         685.458 73% 68% 

€         700.000 73% 70% 

€     1.884.937 96% 98% 

€     3.069.875 98% 99% 

€     4.254.812 100% 100% 

€     5.439.750 100% 100% 

€     6.624.687 100% 100% 
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Table 33– Data from Day1 accumulated probabilities – Deterministic versus Stochastic 

using Point Forecast plus Extreme Scenarios 

 % under certain value 

 Deterministic Stochastic 

€                 529.979 0% 0% 

€                 540.605 0% 0% 

€                 551.231 0% 0% 

€                 561.858 52% 52% 

€                 572.484 52% 58% 

€                 583.110 53% 58% 

€                 593.737 66% 71% 

€                 604.363 66% 76% 

€                 614.989 66% 76% 

€                 625.616 66% 76% 

€                 636.242 67% 76% 

€                 646.868 67% 77% 

€                 657.495 68% 78% 

€                 668.121 68% 78% 

€                 678.747 68% 78% 

€                 689.374 68% 78% 

€                 700.000 68% 78% 

€                 916.667 74% 81% 

€             1.133.333 84% 84% 

€             1.350.000 85% 88% 

€             1.566.667 86% 89% 

€             1.783.333 92% 91% 

€             2.000.000 97% 92% 

€             2.932.201 100% 94% 

€             3.864.401 100% 98% 

€             4.796.602 100% 98% 

€             5.728.803 100% 98% 

€             6.661.003 100% 100% 
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Table 34 – Data from Day2 accumulated probabilities – All Approaches 

 % under certain value 

 Deterministic Stochastic Top 5 Stochastic Extremes 

€                 385.209 0% 0% 0% 

€                 415.949 0% 25% 15% 

€                 446.688 14% 60% 30% 

€                 477.428 15% 74% 39% 

€                 508.167 22% 83% 50% 

€                 538.907 41% 86% 58% 

€                 569.646 48% 88% 63% 

€                 600.386 51% 88% 65% 

€                 631.865 59% 91% 74% 

€                 661.865 61% 91% 75% 

€                 692.604 65% 91% 77% 

€                 723.344 67% 92% 77% 

€                 754.083 68% 92% 82% 

€                 784.823 69% 92% 84% 

€                 815.562 70% 92% 87% 

€                 846.302 71% 92% 88% 

€                 877.041 74% 94% 92% 

€                 907.781 76% 94% 93% 

€                 938.520 76% 94% 93% 

€                 969.260 76% 95% 93% 

€             1.000.000 77% 95% 93% 

€             2.741.903 94% 98% 99% 

€             4.483.806 98% 100% 100% 

€             6.225.709 100% 100% 100% 

€             7.967.612 100% 100% 100% 

€             9.709.515 100% 100% 100% 
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Table 35 – Data from Day1 accumulated probabilities – All Approaches 

 % under certain value 

 Deterministic Stochastic Top 5 Stochastic Extremes 

€                 523.508 0% 0% 0% 

€                 547.332 0% 1% 0% 

€                 571.157 58% 71% 58% 

€                 594.981 70% 73% 72% 

€                 618.806 71% 81% 77% 

€                 642.631 71% 81% 77% 

€                 666.455 72% 81% 78% 

€                 690.280 75% 82% 84% 

€                 714.104 75% 82% 84% 

€                 737.929 76% 84% 85% 

€                 761.754 76% 84% 86% 

€                 785.578 76% 84% 86% 

€                 809.403 77% 84% 86% 

€                 833.227 77% 84% 86% 

€                 857.052 77% 84% 87% 

€                 880.877 77% 84% 89% 

€                 904.701 78% 84% 90% 

€                 928.526 78% 84% 90% 

€                 952.350 78% 84% 90% 

€                 976.175 79% 85% 90% 

€             1.000.000 79% 86% 90% 

€             2.321.704 98% 96% 99% 

€             3.643.409 100% 100% 100% 

€             4.965.114 100% 100% 100% 

€             6.286.819 100% 100% 100% 

€             7.608.524 100% 100% 100% 
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B.1 “Coping with Wind Power Uncertainty in Unit 

Commitment: a Robust Approach using the New Hybrid 

Metaheuristic DEEPSO” 

The following abstract was submitted to the “MedPower 2014” and its acceptance still 

holds confirmation. 

 



 1 

 

I.  EXTENDED ABSTRACT 

HE increasing share of  wind power in thermal-dominated 

generation systems is seen as a threat not only to system 

reliability but also to its cost-effective operation. The decision 

to start or shut down thermal units for the next operating hours 

must take into account the inherent uncertainty of wind power 

forecasts.  

The error inherent to wind power forecasting can make the 

power operation costly prohibitive and/or unreliable. For 

example, if wind power is less than its forecast, the system 

operator will need to start back up thermal units at increased 

generation costs and risk load curtailment. On the other hand, 

if the wind power is greater than its forecast, the system 

operator might need to decrease the production of the 

generators and risk wind spill. Even if the wind could be 

accurately forecasted, there would still be hours where wind 

power is not used at its maximum output due to insufficient 

ramping capabilities. Robust unit commitment schedules are 

therefore necessary not only to keep the operation costs low 

but also to avoid unwanted actions such as wind spillage and 

load curtailment. 

The unit commitment model addressed in this paper 

consists on the minimization of the total operation costs over a 

commitment period taking into account technical constraints of 

the generating units such as ramping rates and minimum up 

and down times. Wind power spillage is also considered as 

well as load curtailment.  

In addition, this paper evaluates the impact on the total 

operational costs of using a stochastic unit commitment 

approach instead of the traditional deterministic approach. The 

stochastic approach consists on using several wind power 

scenarios to devise a robust commitment plan for the 

generation units whereas the deterministic approach relies 

solely on the point forecasts. The scenarios are built from the 

wind power point forecasts taking into account the temporal 
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dependency between errors. The method used to obtain 

scenarios from wind power point forecasts is detailed in [1]. 

Furthermore, clustering techniques are used to find a set of 

most representative scenarios and underlying probabilities [2] 

for decreasing the computational effort.  

The generation of unit commitment solutions is guaranteed 

by a new hybrid metaheuristic DEEPSO [3], which is 

combination of the DE-EA-PSO algorithms, where EA stands 

for Differential Evolution, EA for Evolutionary Programming 

and PSO for Particle Swarm Optimization.  

The generation of new unit commitment solutions in 

DEEPSO includes a simple correction algorithm to make sure 

that the generating units’ constraints, like minimum up and 

minimum down time, as well as minimum spinning reserve are 

verified at all times. The evaluation of solutions consists on the 

computation of the optimal economic dispatch for all the 

operating periods taking into account the ramping capabilities 

of generating units. Benders Decomposition [4] and Dual 

Dynamic Programming [5] are used for the calculation of the 

optimal economic dispatch.  

Stochastic and deterministic unit commitment solutions are 

compared by obtaining the operational costs of these solutions 

for the actual wind power realizations. Furthermore, the set of 

representative scenarios is also used to make a probabilistic 

analysis on the wind power spillage and load curtailment risks. 
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