Saltar para:
Logótipo
This page in english A Ajuda Contextual não se encontra disponível Autenticar-se
FCUP
Você está em: Início > Publicações > Visualização > PRIME ELEMENTS IN PARTIALLY ORDERED GROUPOIDS APPLIED TO MODULES AND HOPF ALGEBRA ACTIONS
Autenticação




Mapa das Instalações
FC6 - Departamento de Ciência de Computadores FC5 - Edifício Central FC4 - Departamento de Biologia FC3 - Departamento de Física e Astronomia e Departamento GAOT FC2 - Departamento de Química e Bioquímica FC1 - Departamento de Matemática

PRIME ELEMENTS IN PARTIALLY ORDERED GROUPOIDS APPLIED TO MODULES AND HOPF ALGEBRA ACTIONS

Título
PRIME ELEMENTS IN PARTIALLY ORDERED GROUPOIDS APPLIED TO MODULES AND HOPF ALGEBRA ACTIONS
Tipo
Artigo em Revista Científica Internacional
Ano
2005
Autores
Christian Lomp
(Autor)
FCUP
Revista
Vol. 4
Páginas: 77-97
ISSN: 0219-4988
Editora: World Scientific
Indexação
Publicação em ISI Web of Science ISI Web of Science
Classificação Científica
FOS: Ciências exactas e naturais > Matemática
CORDIS: Ciências Físicas > Matemática > Álgebra
Outras Informações
ID Authenticus: P-00M-DFA
Resumo (PT): Primeness on modules can be defined by prime elements in a suitable partially ordered groupoid. Using a product on the lattice of submodules L(M) of a module M defined in [3] we revise the concept of prime modules in this sense. Those modules M for which L(M) has no nilpotent elements have been studied by Jirasko and they coincide with Zelmanowitz’ “weakly compressible” modules. In particular we are interested in representing weakly compressible modules as a subdirect product of “prime” modules in a suitable sense. It turns out that any weakly compressible module is a subdirect product of prime modules (in the sense of Kaplansky). Moreover if M is a self-projective module, then M is weakly compressible if and only if it is a subdirect product of prime modules (in the sense of Bican et al.). An application to Hopf actions is given.
Abstract (EN): Primeness on modules can be defined by prime elements in a suitable partially ordered groupoid. Using a product on the lattice of submodules (M) of a module M defined in [3] we revise the concept of prime modules in this sense. Those modules M for which (M) has no nilpotent elements have been studied by Jirasko and they coincide with Zelmanowitz' "weakly compressible" modules. In particular we are interested in representing weakly compressible modules as a subdirect product of "prime" modules in a suitable sense. It turns out that any weakly compressible module is a subdirect product of prime modules (in the sense of Kaplansky). Moreover if M is a self-projective module, then M is weakly compressible if and only if it is a subdirect product of prime modules (in the sense of Bican et al.). An application to Hopf actions is given.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 21
Tipo de Licença: Clique para ver a licença CC BY-NC
Documentos
Nome do Ficheiro Descrição Tamanho
central Preprint 221.36 KB
Publicações Relacionadas

Da mesma revista

The algebraic classification of nilpotent algebras (2021)
Artigo em Revista Científica Internacional
Kaygorodov I.; Khrypchenko M.; Samuel A Lopes
Structure and isomorphisms of quantum generalized Heisenberg algebras (2021)
Artigo em Revista Científica Internacional
Samuel A Lopes; Razavinia, F
PROFINITE IDENTITIES FOR FINITE SEMIGROUPS WHOSE SUBGROUPS BELONG TO A GIVEN PSEUDOVARIETY (2003)
Artigo em Revista Científica Internacional
Almeida, J; Volkov, M. V.
On topological lattices and their applications to module theory (2016)
Artigo em Revista Científica Internacional
Abuhlail, J; Christian Lomp
ON THE NOTION OF STRONG IRREDUCIBILITY AND ITS DUAL (2013)
Artigo em Revista Científica Internacional
Abuhlail, Jawad; Lomp, Christian

Ver todas (11)

Recomendar Página Voltar ao Topo
Copyright 1996-2022 © Faculdade de Ciências da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Última actualização: 2016-03-23 I  Página gerada em: 2022-07-02 às 23:39:40 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias