Saltar para:
Logótipo
Você está em: Início > M502
Mapa das Instalações
FC6 - Departamento de Ciência de Computadores FC5 - Edifício Central FC4 - Departamento de Biologia FC3 - Departamento de Física e Astronomia e Departamento GAOT FC2 - Departamento de Química e Bioquímica FC1 - Departamento de Matemática

Teoria Combinatória de Grupos e Semigrupos

Código: M502     Sigla: M502

Áreas Científicas
Classificação Área Científica
OFICIAL Matemática

Ocorrência: 2015/2016 - 2S

Ativa? Sim
Unidade Responsável: Departamento de Matemática
Curso/CE Responsável: Programa Doutoral em Matemática - Interuniversitário

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
IUD-M 5 PE do Prog Inter-Univ Dout Mat 1 - 9 60 243

Língua de trabalho

Inglês

Objetivos

Getting acquaintance with the recent trends of combinatorial and geometric (semi)group theory.

Resultados de aprendizagem e competências

Capacity to solve exercises of advanced nature and ability to engage on research work in the field

Modo de trabalho

Presencial

Programa

1. Words and free monoids.

Words are the primordial object in both combinatorial group theory and combinatorial semigroup theory. We introduce their basic combinatorial properties and explore free monoids.

2. Languages and automata.

Languages are sets of words and they can be used to encode virtually everything, playing therefore a major role in theoretical computer science. Rational languages and finite automata are central.

3. Free groups.

Free groups play a major role in this course. We explore several important themes: Stallings' automata for fi nitely generated subgroups, the automorphism group, rational subsets, the boundary of the completion for the pre fix metric.

4. Presentations.

This is the moment when we leave the safe coast of free objects for the open sea of (fi nite) presentations, where we subject free objects to a few defi ning relations and obtain therefore various types of quotients.

5. Van Kampen diagrams and pictures.

Van Kampen diagrams and pictures constitute the classical geometric tools to study group presentations, and have been successfully applied to study many types of presentations, such as in the case of small cancellation.

6. Free products and graph products.

We study free products and their generalization to the partial commutativity case: graph products. We start by the basic models of trace monoids and graph groups.

7. Hyperbolic groups.

Gromov introduces hyperbolic groups in 1987 with a revolutionary idea: to use the geometry of the Cayley graph to solve algorithmic problems. We study the properties and applications of the theory, including the central concept of quasi-isometry.

8. Automatic groups.

This concept can be defi ned through purely automata-theoretic features or blending it in alternative with a geometric property of the Cayley graph. We present some of its successes.

9. Self-similar groups.

Grigorchuk boosted in the last decade the study of self-similar groups, also known as automata groups. These are groups of sequential permutations built from a certain type of fi nite automata, and are deeply related to wreath products and actions in uniform trees of finite degree.

10. Free inverse monoids.

Inverse monoids correspond to partial injective transformations the way groups correspond to permutations. Free inverse monoids, in the beautiful Munn construction, are built from finite trees (fi nite automata, actually), and constitute undoubtedly one of the most aesthetic algebraic objects in Mathematics.

11. Inverse monoid presentations and Stephen's sequence.

Stephen's sequence emerges in the late eighties as a powerful tool to study various fi nite inverse monoid presentations from a geometric viewpoint. We introduce the construction and explore some of its nicest applications.

Bibliografia Obrigatória

Pedro V. Silva; Teoria Geométrica de Grupos, 2014

Observações Bibliográficas

Detailed bibliography can be provided upon request to the email pvsilva@fc.up.pt.

Métodos de ensino e atividades de aprendizagem

Exposition on blackboard. Discussion of exercises.

Tipo de avaliação

Avaliação distribuída com exame final

Componentes de Avaliação

Designação Peso (%)
Exame 50,00
Trabalho escrito 50,00
Total: 100,00

Fórmula de cálculo da classificação final

50% of the classification is obtained by the written resolution of 14 exercises. The other 50% are determined by the final exam, where the students are free to use notes to help them. A minimum marking of 8.5 is required in the final exam.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Ciências da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-11-29 às 17:41:29 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico