Go to:
Logótipo
You are in:: Start > Q4084

Advanced Methods for Structural and Morphological Analysis

Code: Q4084     Acronym: Q4084     Level: 400

Keywords
Classification Keyword
OFICIAL Chemistry

Instance: 2023/2024 - 1S Ícone do Moodle

Active? Yes
Web Page: https://moodle.up.pt/course/view.php?id=2322
Responsible unit: Department of Chemistry and Biochemistry
Course/CS Responsible: Master in Applications in Biotechnology and Synthetic Biology

Cycles of Study/Courses

Acronym No. of Students Study Plan Curricular Years Credits UCN Credits ECTS Contact hours Total Time
M:ABBS 0 The study plan from 2019/20. 1 - 6 42 162
M:CTN 2 Official Study Plan since 2020_M:CTN 1 - 6 42 162

Teaching language

Suitable for English-speaking students

Objectives

- Recognize the role of structural analysis methods in a wide range of applications, from Pure&Applied Chemistry or (Nano)Materials Science to Biomedicine

- Learn the most relevant morphological and structural analysis techniques and their adequacy according to the desired applications

- Identify the scope and limitations that characterize each of the relevant structural analysis methods

- Read/interpret scientific papers related to the course area

- Elaborate a monograph on a selected subject related to the course area

- Present an oral communication on a given subject related to the course area

Learning outcomes and competences

The course’s main goal is to provide advanced training in morphological and structural analysis methods, allowing the students to understand the fundamentals and main applications of the most relevant techniques presently used for the characterization of molecules, (nano)materials and biological systems. Consequently, the program starts by the revision of the fundamentals of each of the techniques to be addressed, followed by an in-depth study of each one of them and of their main current applications. Several case studies will be chosen on the basis of their interdisciplinarity and inclusion of one or more relevant techniques. These case studies will be analyzed and discussed with the students, aiming at consolidating their training, allowing them to develop their own ability to analyze more complex situations.

Working method

Presencial

Pre-requirements (prior knowledge) and co-requirements (common knowledge)

Not applicable

Program




    1. Vibrational spectroscopy: infrared absorption and Raman dispersion. Theoretical foundations, spectrum interpretation and practical applicability.

    2. Fluorescence spectroscopy. Fluorescence resolved in time. RET Fluorescence anisotropy. Fluorescence microscopy.

    3. Cases of study Nuclear magnetic resonance: Theoretical foundations, techniques and interpretation of 1D and 2D spectra.

    4. Electronic paramagnetic resonance operating at X-band frequency (9.5 GHz). Theoretical foundations, interpretation of spectra and practical examples.

    5. Atomic force and tunnel effect microscopy.

    6. Importance of electron microscopy in the development of nanotechnology. Identification of the microscopy technique appropriate to the morphological characterization of different materials.

    7. Case Studies



Mandatory literature

E. de Hoffman, V. Stroobant; Mass Spectrometry: Principles and Applications – 3rd ed, Wiley-VCH, 2007. ISBN: ISBN-10: 0470033118
B. H. Stuart; Infrared Spectroscopy: Fundamentals and Applications (Analytical Techniques in the Sciences, John Wiley , 2011. ISBN: ISBN-10: 0470854286
Yang Leng,; Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, Wiley-VCH, 2010. ISBN: ISBN-13: 9780470823002
Joseph R Lakowicz;; Principles of Fluorescence Spectroscopy , Publishe: Springer, 2006
N. Yao, Z.L. Wang;; Handbook of Microscopy for Nanotechnology, ., 2005

Complementary Bibliography

M. Hesse, H. Meier, B. Zeeh, Thieme; Spectroscopic Methods in Organic Chemistry, 199. ISBN: ISBN-10: 3131060417
L.E. Franken, K. Grünewald, E.J. Boekema, M.C.A. Stuart;; A Technical Introduction to Transmission Electron Microscopy for Soft-Matter: Imaging, Possibilities, Choices and Technical Developments, Small , 2020
2010. Eaton and P. West; “Atomic Force Microscopy”, OUP, 2010.

Teaching methods and learning activities

- Lectures: Presentation of syllabus topics using multimedia tools; specialized topics will be presented by invited guests. The UC management will be made using the Moodle platform.

- Tutorial sessions: Analysis of scientific papers; flash presentations on scientific papers; resolution of case studies involving morphological and structural analysis techniques; summary reports on lectures by invited guests; application of concepts learnt in the elaboration of original scientific materials, e.g., monographs and oral presentations on topics related to the course.

- Evaluation: Distributed with final exam

Distributed evaluation component: based on the quality of the tasks attributed within tutorial sessions (discussion of scientific papers and case studies, oral presentations, reports on lectures by guests, monographs, etc.).

Final Mark = 60% Exam + 40% Tutorial classes

keywords

Physical sciences > Chemistry > Organic chemistry
Technological sciences > Technology > Nanotechonology
Natural sciences > Biological sciences
Physical sciences > Chemistry > Biochemistry
Physical sciences > Chemistry
Physical sciences > Chemistry > Inorganic chemistry
Physical sciences > Chemistry > Molecular chemistry
Physical sciences > Chemistry > Structural chemistry

Evaluation Type

Distributed evaluation with final exam

Assessment Components

designation Weight (%)
Exame 60,00
Participação presencial 20,00
Trabalho escrito 10,00
Trabalho laboratorial 10,00
Total: 100,00

Amount of time allocated to each course unit

designation Time (hours)
Apresentação/discussão de um trabalho científico 0,00
Estudo autónomo 65,00
Frequência das aulas 42,00
Trabalho escrito 25,00
Trabalho laboratorial 30,00
Total: 162,00

Eligibility for exams

The number of the missed tutorials classes must obey the estatutodos da FCUP

The exam MArk have to be equal or higher than 7,5
The final mark of Tutorial classes have to be equal or higher than 9,5

Calculation formula of final grade

Final Mark= 60% Exam  + 40% Works developed on TP/P classes

Examinations or Special Assignments

Not applicable

Internship work/project

Not applicable

Special assessment (TE, DA, ...)

Final Mark= 70% Exam + 30% Monography

Classification improvement

Final Exam
Recommend this page Top
Copyright 1996-2024 © Faculdade de Ciências da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-09-30 at 08:52:56 | Acceptable Use Policy | Data Protection Policy | Complaint Portal