Go to:
Logótipo
You are in:: Start > F155

Introduction to Physics I

Code: F155     Acronym: F155

Keywords
Classification Keyword
OFICIAL Physics

Instance: 2015/2016 - 1S Ícone do Moodle

Active? Yes
Web Page: https://moodle.up.pt/course/view.php?id=2306
Responsible unit: Department of Physics and Astronomy
Course/CS Responsible: Bachelor in Geology

Cycles of Study/Courses

Acronym No. of Students Study Plan Curricular Years Credits UCN Credits ECTS Contact hours Total Time
L:B 0 Plano de estudos a partir de 2008 3 - 7,5 77 202,5
L:CTA 63 Plano de estudos de 2008 até 2015/16 1 - 7,5 77 202,5
L:G 53 P.E - estudantes com 1ª matricula anterior a 09/10 1 - 7,5 77 202,5
3
P.E - estudantes com 1ª matricula em 09/10 1 - 7,5 77 202,5
3
L:Q 0 Plano de estudos Oficial 3 - 7,5 77 202,5

Teaching language

Suitable for English-speaking students

Objectives

F155 is an introductory physics course.

Fundamental physical principles of mechanics, waves, thermodynamics, electricity and geomagnetism are covered.

 

Learning outcomes and competences

After completion of this course, the student should be able to:

- Analyze physical quantities in terms of units and dimensions;

- Analyze elementary motion problems in one, two and three dimensions. Analyze in particular projectile and circular motions.

- Apply Newton's laws of motion and the work-kinetic energy theorem in common introductory problems.

- Understand introductory concepts involved in momentum and energy conservation.

- Apply introductory principles dealing with simple harmonic motion.

- Analyze elementary problems involving laws of thermodynamics

- Understand certain elementary concepts in electricity and magnetism, including Coulomb and magnetic forces, fields, circuits and Kirchhoff’ s laws.

- Demonstrate basic experimental skills by the practice of setting up and conducting an experiment safely and efficiently and report verbally and in written language the results of the experiment.

- Demonstrate basic communication skills by working in groups on laboratory experiments and by the discussion and interpretation of experimental data and errors analysis.

Working method

B-learning

Program

Mechanics:

Units, physical quantities and vectors.

Motion in one dimension; displacement; velocity; acceleration.

Motion in two and three dimensions; displacement; velocity; acceleration; projectile motion; circular motion.

Newton’s laws; force and mass; the force due to gravity: weight; contact forces; friction; drag forces; forces along a curved path; the mass center.

Work and kinetic energy; work-kinetic energy theorem.

Conservation of energy; potential energy; the conservation of mechanical energy; conservative and nonconservative forces.

Conservation of linear momentum; collisions.

 

Waves:

Periodic motions; simple harmonic motion; energy in simple harmonic motion; some oscillating systems.

 

Thermodynamics:

Thermal equilibrium and temperature; gas thermometers; absolute temperature scale; the ideal-gas law.

Heat and the first law of thermodynamics; heat capacity and specific heat; the internal energy of an ideal gas: work and the PV diagrams for a gas.

The second law of thermodynamics; heat engines; refrigerators; irreversibility; disorder and entropy.

Thermodynamic potentials: the enthalpy and the Gibbs free energy.

 

Electricity:

Electric charge; conductors and insulators; Coulomb’s law; the electric field; electric field lines; action of the electric field on charges.

Electric potential; potential due to a system of point charges; equipotential surfaces.

Electric current and direct current circuits; resistance and Ohm’s law; energy in electric circuits; combination of resistors; Kirchhoff’s rules.

 

The magnetic field:

The force exerted by a magnetic field; motion of a point charge in a magnetic field.

Sources of the magnetic field; the magnetic field of moving point charges; magnetic field of a circular current loop; magnetic field due to a current in a solenoid; magnetic moment.

Geomagnetic field; geomagnetism; geomagnetic elements; the dipole magnetic field origin; Glatzmaier-Roberts geodynamo model.

 

Mandatory literature

Tipler, P. and Mosca, G., ; Physics for Scientists and Engineers, 6th Edition, W. H. Freeman and Company, 2008. ISBN: 0-7167-8964-7
Halliday/Resnick; Fundamentos de Física, vol 1, Mecânica, LTC, 2009
Halliday/Resnick; Fundamentos de Física, vol 2, Gravitação, Ondas e Termodinâmica, LTC, 2009
Halliday/Resnick; Fundamentos de Física, vol 3, Electromagnetismo, LTC, 2009
Resnick R., Halliday D., Walker J.; Fundamentals of Physics Extended, Wiley; 9 edition, 2010. ISBN: 0470469080
Sears/ Zemansky; Física I, (Mecânica), Addisson Wesley, 2003
Sears/Zemansky; Física II, (Termodinâmica e Ondas), Addisson Wesley, 2003
Young/Freedman; University Physics, 12 Edition, Addisson Wesley, 2006

Complementary Bibliography

Alaor Chaves; Física Básica: Mecânica, LTC, 2007
Alaor Chaves; Física Básica: Ondas e Termodinâmica, LTC, 2007
Alaor Chaves; Física Básica: Electromagnetismo, LTC, 2007
Nicolau/Toledo; Fundamentos de Física I: Mecânica, LTC, 2006
Nicolau/Toledo; Fundamentos de Física II: Termodinâmica, Optica e Ondas, LTC, 2006
Nicolau/Toledo; Fundamentos de Física III: Electricidade, Física Moderna, Análise Dimensional, LTC, 2006
Dias de Deus et all; Introdução à Física, McGraw-Hill, 2000
Alonso M., Finn, E; Physics, Revised edition, Addison Wesley, 1992
Çengel/Boles; Termodinâmica, McGraw-Hill, 1998
Boresi/Schmit; Dinâmica, Thompson, 2003

Teaching methods and learning activities

Teaching will be done in a continuous way, both in lectures and in the remaining classes. This requires a commitment to a responsible attendance by students.

Subject´s presentation will be held in lectures. Recitation classes are designed to review general concepts from lectures and to solve problems.

In addition to face to face lectures, recitations and laboratory classes, didactic contents will be made available in Moodle Platform. Associated with this didactic contents, formative tests will also be available.

Particular emphasis will be given to motivate students to work throughout the semester. It is considered that learning implies dedicated work and attendance of all those interested in acquiring skills.

 

LABORATORY CLASSES:

- Students should prepare in advance for the laboratory work.

- Students should bring to class a logbook exclusively for recording and processing of experimental data and calculations of uncertainties.

- The teacher may check the contents of the logbook at any time.

keywords

Physical sciences
Physical sciences > Physics
Physical sciences > Physics > Applied physics > Experimental physics
Physical sciences > Physics > Classical mechanics
Physical sciences > Physics > Thermodynamics

Evaluation Type

Distributed evaluation with final exam

Assessment Components

designation Weight (%)
Exame 85,00
Trabalho laboratorial 15,00
Total: 100,00

Eligibility for exams

ATTENDANCE POLICY

A.
Attendance at laboratory and recitation classes is mandatory. Failure to attend three-quarters of the provided recitations or laboratory classes result in a RFF grade (“reprovado por falta de frequência”). This rule does not apply to students who have obtained a waiver attendance.

B. Taking mini formative and formative assessment tests are mandatory. A grade of RFF (“reprovado por falta de frequência”) should be awarded for those students failure three-quarters of the provided tests.

C. There is a minimum grade of 7 (seven) for L_AC (see “Fórmula de cálculo da classificação final”).

 

Waiver attendance at recitation and laboratory classes

A) Students who had a positive attendance (achievement) in the previous years 2013/14 or 2014/15:

i) and had a positive grade in the L_AC component, may request waiver attendance for laboratory classes.

ii) may request waiver attendance for recitation classes.

iii) and don´t request a waiver attendance for recitation and laboratory classes should attend these classes. Failure of this requirement results in a RFF grade.

B) Worker students (first enrolment) may request a waiver attendance only for recitation classes.

Calculation formula of final grade

The final grade (NF) for students attending laboratory classes is obtained by

NF=0.75*(TTP_E) + 0.10*(L_E) + 0.15*(L_AC)

where

TTP_E – lecture and recitation exam grade

L_E – laboratory exam grade

L_AC – laboratory continuous grade

There is a minimum grade of 7(seven) for L_AC.

If the final grade value (NF) ≥ 9.5  then the student passes.

If 8.0 ≤ NF < 9.5 students may request an oral examination.

 

The final grade (NF) for waiver attendance students is obtained by:

NF=0.90*(TTP_E) + 0.10*(L_E)

where

TTP_E – lecture and recitation exam grade

L_E – laboratory exam grade

If the final grade value (NF) ≥ 9.5 then the student passes. 

If 8.0 ≤ NF < 9.5 students may request an oral examination.

 

Observations

Any omissions and/or questions regarding this form will be resolved by the course’s instructor.

The jury can demand that the student takes an additional written and/or oral examination.
Recommend this page Top
Copyright 1996-2024 © Faculdade de Ciências da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-09-27 at 10:26:36 | Acceptable Use Policy | Data Protection Policy | Complaint Portal